ترغب بنشر مسار تعليمي؟ اضغط هنا

Seven new 3D modes of self-organization in DC glow discharges are computed in the framework of the simplest self-consistent model of glow discharge. Some of the modes branch off from and rejoin the 1D mode, while others bifurcate from a 2D or a 3D mo de. The patterns associated with computed 3D modes are similar to patterns observed in the experiment. The computed transition from a spot pattern comprising five spots into a pattern comprising a ring spot also was observed in the experiment.
The organic compounds HCN and C2H2, present in protoplanetary disks, may react to form precursor molecules of the nucleobases, such as the pyrimidine molecule, C4H4N2. Depending on the temperature in a given region of the disk, molecules are in the g as phase or condensed onto grain surfaces. The action of X-ray photons and MeV protons, emitted by the young central star, may lead to several physical and chemical processes in such prestellar environments. In this work we have experimentally investigated the ionization, dissociation and desorption processes of pyrimidine in the condensed and the gas phase stimulated by soft X-rays and protons, respectively. Pyrimidine was frozen at temperatures below 130 K and irradiated with X-rays at energies from 394 to 427 eV. In the gas phase experiment, a pyrimidine effusive jet at room temperature was bombarded with protons of 2.5 MeV. In both experiments, the time-of-flight mass-spectrometry technique was employed. Partial photodesorption ion yields as a function of the X-ray photon energy for ions such as C3H2+, HC3NH+ and C4H+ were determined. The experimental results were applied to conditions of the protoplanetary disk of TW Hydra star. Assuming three density profiles of molecular hydrogen, 1 x 10^6, 1 x 10^7 and 1 x 10^8 cm^-3, we determined HC3NH+ ion-production rates of the order of 10^-31 up to 10^-8 ions cm^-3 s^-1. Integrating over 1 x 10^6 yr, HC3NH^+ column density values, ranging from 3.47 x 10^9 to 1.29 x 10^13 cm^-2, were obtained as a function of the distance from central star. The optical depth is the main variable that affects ions production. In addition, computational simulations were used to determine the kinetic energies of ions desorbed from pyrimidine ice distributed between ~ 7 and 15 eV.
Luminous red galaxies (LRGs) are much rarer and more massive than L* galaxies. Coupled with their extreme colours, LRGs therefore provide a demanding testing ground for the physics of massive galaxy formation. We present the first self-consistent pre dictions for the abundance and properties of LRGs in hierarchical structure formation models. We test two published models which use quite different mechanisms to suppress the formation of massive galaxies: the Bower et al. (2006) model, which invokes ``AGN-feedback to prevent gas from cooling in massive haloes, and the Baugh et al. (2005) model which relies upon a ``superwind to eject gas before it is turned into stars. Without adjusting any parameters, the Bower et al. model gives an excellent match to the observed luminosity function of LRGs in the SDSS (with a median redshift of z=0.24) and to their clustering; the Baugh et al. model is less successful in these respects. Both models fail to match the observed abundance of LRGs at z=0.5 to better than a factor of ~2. In the models, LRGs are typically bulge dominated systems with M* of ~2x10^11 h^{-1} M_sun and velocity dispersions of ~250 km s^{-1}. Around half of the stellar mass in the model LRGs is already formed by z~2.2 and is assembled into one main progenitor by z~1.5; on average, only 25% of the mass of the main progenitor is added after z~1. LRGs are predicted to be found in a wide range of halo masses, a conclusion which relies on properly taking into account the scatter in the formation histories of haloes. Remarkably, we find that the correlation function of LRGs is predicted to be a power law down to small pair separations, in excellent agreement with observational estimates. Neither the Bower et al. nor the Baugh et al. model is able to reproduce the observed radii of LRGs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا