ترغب بنشر مسار تعليمي؟ اضغط هنا

We observed the extreme close-in hot Jupiter system WASP-12 with HST. Near-UV transits up to three times deeper than the optical transit of WASP-12b reveal extensive diffuse gas, extending well beyond the Roche lobe. The distribution of absorbing gas varies between visits. The deepest NUV transits are at wavelength ranges with strong photospheric absorption, implying the absorbing gas may have temperature and composition similar to the stellar photosphere. Our spectra reveal significantly enhanced absorption (greater than 3 sigma below the median) at ~200 wavelengths on each of two HST visits; 65 of these wavelengths are consistent between the two visits, using a strict criterion for velocity matching which excludes matches with velocity shifts exceeding ~20 km/s. Excess transit depths are robustly detected throughout the inner wings of the MgII resonance lines independently on both HST visits. We detected absorption in FeII 2586A, the heaviest species yet detected in an exoplanet transit. The MgII line cores have zero flux, emission cores exhibited by every other observed star of similar age and spectral type are conspicuously absent. WASP-12 probably produces normal MgII profiles, but the inner portions of these strong resonance lines are likely affected by extrinsic absorption. The required Mg+ column is an order of magnitude greater than expected from the ISM, though we cannot completely dismiss that possibility. A more plausible source of absorption is gas lost by WASP-12b. We show that planetary mass loss can produce the required column. Our Visit 2 NUV light curves show evidence for a stellar flare. We show that some of the possible transit detections in resonance lines of rare elements may be due instead to non-resonant transitions in common species. We present optical observations and update the transit ephemeris.
Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the Continuous Habitable Zone (CHZ) for ~8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 10^2 (10^4) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M_sun white dwarf will be distorted by Roche geometry, and a Kepler-11d analogue would overfill its Roche lobe. With current facilities a Super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known cool white dwarf. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.
The Wide Angle Search for Planets (WASP) photometrically surveys a large number of nearby stars to uncover candidate extrasolar planet systems by virtue of small-amplitude lightcurve dips on a < 5-day timescale typical of the ``Hot-Jupiters. Observat ions with the SuperWASP-North instrument between April and September 2004 produced a rich photometric dataset of some 1.3 billion datapoints from 6.7 million stars. Our custom-built data acquisition and processing system produces ~0.02 mag photometric precision at V=13. We present the transit-candidates in the 03h-06h RA range. Of 141,895 lightcurves with sufficient sampling to provide adequate coverage, 2688 show statistically significant transit-like periodicities. Of these, 44 pass visual inspection of the lightcurve, of which 24 are removed through a set of cuts on the statistical significance of artefacts. All but 4 of the remaining 20 objects are removed when prior information at higher spatial-resolution from existing catalogues is taken into account. Of the four candidates remaining, one is considered a good candidate for follow-up observations with three further second-priority targets. We provide detailed information on these candidates, as well as a selection of the false-positives and astrophysical false-alarms that were eliminated, and discuss briefly the impact of sampling on our results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا