ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the effect of intermolecular forces on the fluctuations of supported liquid films. Using an optically-induced thermal gradient, we form nanometer-thin films of wetting liquids on glass substrates, where van der Waals forces are balanced by thermocapillary forces. We show that the fluctuation dynamics of the film interface is strongly modified by intermolecular forces at lower frequencies. Data spanning three frequency decades are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of intermolecular forces on thermal fluctuations when fluids are confined at the nanoscale.
This paper reports on the frictional properties of smooth rubber substrates sliding against rigid surfaces covered with various densities of colloidal nano-particles (average diameter 77 nm). Friction experiments were carried out using a transparent Poly(dimethyl siloxane) (PDMS) rubber contacting a silica lens with silica nano-particles sintered onto its surface. Using a previously described methodology (Nguyen textit{et al.}, textit{J. of Adhesion} textbf{87} (2011) 235-250 ), surface shear stress and contact-pressure distribution within the contact were determined from a measurement of the displacement field at the surface of the PDMS elastomer. Addition of silica nano-particles results in a strong, pressure-independent enhancement of the frictional shear stress as compared to the smooth lens. The contribution of viscoelastic losses to these increased frictional properties is analyzed in the light of a numerical model that solves the contact problem between the rubber and the rough surface. An order-of-magnitude agreement is obtained between experimental and theoretical results, the latter showing that the calculation of viscoelastic dissipation within the contact is very sensitive to the details of the topography of the rigid asperities.
Frictional properties of contacts between a smooth viscoelastic rubber and rigid surfaces are investigated using a torsional contact configuration where a glass lens is continuously rotated on the rubber surface. From the inversion of the displacemen t field measured at the surface of the rubber, spatially resolved values of the steady state frictional shear stress are determined within the non homogeneous pressure and velocity fields of the contact. For contacts with a smooth lens, a velocity dependent but pressure independent local shear stress is retrieved from the inversion. On the other hand, the local shear stress is found to depend both on velocity and applied contact pressure when a randomly rough (sand blasted) glass lens is rubbed against the rubber surface. As a result of changes in the density of micro-asperity contacts, the amount of light transmitted by the transparent multi-contact interface is observed to vary locally as a function of both contact pressure and sliding velocity. Under the assumption that the intensity of light transmitted by the rough interface is proportional to the proportion of area into contact, it is found that the local frictional stress can be expressed experimentally as the product of a purely velocity dependent term, $k(v)$, by a term representing the pressure and velocity dependence of the actual contact area, $A/A_0$. A comparison between $k(v)$ and the frictional shear stress of smooth contacts suggests that nanometer scale dissipative processes occurring at the interface predominate over viscoelastic dissipation at micro-asperity scale.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا