ترغب بنشر مسار تعليمي؟ اضغط هنا

The interest in decoherence-free, or noiseless subsystems (DFS/NSs) of quantum systems is both of fundamental and practical interest. Understanding the invariance of a set of states under certain transformations is mutually associated with a better u nderstanding of some fundamental aspects of quantum mechanics as well as the practical utility of invariant subsystems. For example, DFS/NSs are potentially useful for protecting quantum information in quantum cryptography and quantum computing as well as enabling universal computation. Here we discuss transformations which are compatible with a DFS/NS that is composed of d-state systems which protect against collective noise. They are compatible in the sense that they do not take the logical (encoded) states outside of the DFS/NS during the transformation. Furthermore, it is shown that the Hamiltonian evolutions derived here can be used to perform universal quantum computation on a three qudit DFS/NS. Many of the methods used in our derivations are directly applicable to a large variety of DFS/NSs. More generally, we may also state that these transformations are compatible with collective motions.
We outline a proposal for a method of preparing an encoded two-state system (logical qubit) that is immune to collective noise acting on the Hilbert space of the states supporting it. The logical qubit is comprised of three photonic three-state syste ms (qutrits) and is generated by the process of spontaneous parametric down conversion. The states are constructed using linear optical elements along with three down-conversion sources, and are deemed successful by the simultaneous detection of six events. We also show how to select a maximally entangled state of two qutrits by similar methods. For this maximally entangled state we describe conditions for the state to be decoherence-free which do not correspond to collective errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا