ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of anisotropic thermal diffusivity on tearing mode stability is analysed in general toroidal geometry. A dispersion relation linking the growth rate to the tearing mode stability parameter, Delta, is derived. By using a resistive MHD code, m odified to include such thermal transport, to calculate tearing mode growth rates, the dispersion relation is employed to determine Delta in situations with finite plasma pressure that are stabilised by favourable average curvature in a simple resistive MHD model. We also demonstrate that the same code can also be used to calculate the basis-functions [C J Ham, et al, Plasma Phys. Control. Fusion 54 (2012) 105014] needed to construct Delta.
139 - C J Ham , J W Connor , S C Cowley 2013
Calculations of tearing mode stability in tokamaks split conveniently into an external region, where marginally stable ideal MHD is applicable, and a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter. Pressure and current perturbations localized around the rational surface alter the stability of tearing modes. Equations governing the changes in the external solution and - are derived for arbitrary perturbations in axisymmetric toroidal geometry. The relationship of - with and without pressure flattening is obtained analytically for four pressure flattening functions. Resistive MHD codes do not contain the appropriate layer physics and therefore cannot predict stability directly. They can, however, be used to calculate -. Existing methods (Ham et al. 2012 Plasma Phys. Control. Fusion 54 025009) for extracting - from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface and favourable average curvature because of the Glasser stabilizing effect. To overcome this difficulty we introduce a specific pressure flattening function that allows the earlier approach to be used. The technique is first tested numerically in cylindrical geometry with an artificial favourable curvature. Its application to toroidal geometry is then demonstrated using the toroidal tokamak tearing mode stability code T7 (Fitzpatrick et al. 1993 Nucl. Fusion 33 1533) which uses an approximate analytic equilibrium. The prospects for applying this approach to resistive MHD codes such as MARS-F (Liu et al. 2000 Phys. Plasmas 7 3681) which utilize a fully toroidal equilibrium are discussed.
Type-I Edge Localised Modes (ELMs) have been mitigated in MAST through the application of n = 3, 4 and 6 resonant magnetic perturbations (RMPs). For each toroidal mode number of the non-axisymmetric applied fields, the frequency of the ELMs has been increased significantly, and the peak heat flux on the divertor plates reduced commensurately. This increase in ELM frequency occurs despite a significant drop in the edge pressure gradient, which would be expected to stabilise the peeling-ballooning modes thought to be responsible for type-I ELMs. Various mechanisms which could cause a destabilisation of the peeling-ballooning modes are presented, including pedestal widening, plasma rotation braking, three dimensional corrugation of the plasma boundary and the existence of radially extended lobe structures near to the X-point. This leads to a model aimed at resolving the apparent dichotomy of ELM control, that is to say ELM suppression occurring due to the pedestal pressure reduction below the peeling-ballooning stability boundary, whilst the reduction in pressure can also lead to ELM mitigation, which is ostensibly a destabilisation of peeling-ballooning modes. In the case of ELM mitigation, the pedestal broadening, 3d corrugation or lobes near the X-point degrade ballooning stability so much that the pedestal recovers rapidly to cross the new stability boundary at lower pressure more frequently, whilst in the case of suppression, the plasma parameters are such that the particle transport reduces the edge pressure below the stability boundary which is only mildly affected by negligible rotation braking, small edge corrugation or short, broad lobe structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا