ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - S. Kim , Byoung S. Ham 2021
Recently, a new interpretation of quantum mechanics has been developed for the wave nature of a photon, where determinacy in quantum correlations becomes an inherent property without the violation of quantum mechanics. Here, we experimentally demonst rate a direct proof of the wave natures of quantum correlation for the so-called coherence de Broglie waves (CBWs) using sub-Poisson distributed coherent photon pairs obtained from an attenuated laser. The observed experimental data coincides with the analytic solutions and the numerical calculations. Thus, the CBWs pave a road toward deterministic and macroscopic quantum technologies for such as quantum metrology, quantum sensing, and even quantum communications, that are otherwise heavily limited due to the microscopic non-determinacy of the particle nature-based quantum mechanics.
31 - Byoung S. Ham 2021
Over the last several decades, quantum entanglement has been intensively studied for potential applications in quantum information science. The Hong-Ou-Mandel (HOM) dip is the most important test tool for direct proof of entanglement between paired p hotons, whose coincidence detection results in anticorrelation due to photon bunching on a beam splitter. Although anticorrelation is due to destructive quantum interference between paired photons, a wavelength-sensitive interference fringe has never been observed in any HOM-type experiments. Here, a typical HOM dip is investigated for entangled photon pairs generated by parametric down conversion processes (SPDC) to understand fundamental physics of anticorrelation. In addition, a pure coherence optics-based Hong-Ou-Mandel scheme is proposed and analyzed for general understanding of anticorrelation in an interferometric system. This study sheds light on deterministic quantum correlation control and opens the door to potential applications of on-demand quantum information science.
Complementarity theory is the essence of the Copenhagen interpretation. Since the Hanbury Brown and Twiss experiments, the particle nature of photons has been intensively studied for various quantum phenomena such as anticorrelation and Bell inequali ty violation in terms of two-photon correlation. Regarding the fundamental question on these quantum features, however, no clear answer exists for how to generate such an entanglement photon pair and what causes the maximum correlation between them. Here, we experimentally demonstrate the physics of anticorrelation on a beam splitter using sub-Poisson distributed coherent photons, where a particular photon number is post-selected using a multiphoton resolving coincidence measurement technique. According to Born rule regarding self-interference in an interferometric scheme, a photon does not interact with others, but can interfere by itself. This is the heart of anticorrelation, where a particular phase relation between paired photons is unveiled for anticorrelation, satisfying the complementarity theory of quantum mechanics.
86 - Byoung S. Ham 2021
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas limited to microscopic regimes directly governed by Heisenberg uncertainty principle via quantum superposition, resulting in nondeterministic a nd probabilistic quantum features. Such quantum features cannot be generated by classical means. Here, a pure classical method of on-demand entangled light-pair generation is presented in a macroscopic regime via basis randomness. This conflicting idea of conventional quantum mechanics invokes a fundamental question about both classicality and quantumness, where superposition is key to its resolution.
68 - Byoung S. Ham 2021
Quantum entanglement is the quintessence of quantum information processing mostly limited to the microscopic regime governed by Heisenberg uncertainty principle. For practical applications, however, macroscopic entanglement gives great benefits in bo th photon loss and sensitivity. Recently, a novel method of macroscopic entanglement generation has been proposed and demonstrated in a coupled interferometric system using classical laser light, where superposition between binary bases in each interferometric system plays a key role. Here, the function of path superposition applied to independent bipartite classical systems is analyzed to unveil secrets of quantum features and to convert a classical system into a quantum system without violating quantum mechanics.
61 - Byoung S. Ham 2021
A novel method of macroscopically entangled light-pair generation is presented for a quantum laser using randomness-based deterministic phase control of coherent light in a Mach-Zehnder interferometer (MZI). Unlike the particle nature-based quantum c orrelation in conventional quantum mechanics, the wave nature of photons is applied for collective phase control of coherent fields, resulting in a deterministically controllable nonclassical phenomenon. For the proof of principle, the entanglement between output light fields from an MZI is examined using the Hong-Ou-Mandel-type anticorrelation technique, where the anticorrelation is a direct evidence of the nonclassical features in an interferometric scheme. For the generation of random phase bases between two bipartite input coherent fields, a deterministic control of opposite frequency shifts results in phase sensitive anticorrelation, which is a macroscopic quantum feature.
66 - Byoung S. Ham 2020
Over the last several decades, entangled photon pairs generated from c{hi}^((2)) nonlinear optical materials via spontaneous parametric down conversion processes have been intensively studied for various quantum correlations such as Bell inequality v iolation and anticorrelation. In a Mach-Zehnder interferometer, the photonic de Broglie wavelength has also been studied for quantum sensing with an enhanced phase resolution overcoming the standard quantum limit. Here, the fundamental principles of quantumness are investigated in an interferometric scheme for controllable quantum correlation not only for bipartite entangled photon pairs in a microscopic regime, but also for macroscopic coherence entanglement generation.
84 - Byoung S. Ham 2020
Recently, new physics for unconditional security in a classical key distribution (USCKD) in a frame of a double Mach-Zehnder interferometer has been proposed and demonstrated as a proof of principle, where the unconditional security is unaffected by the no-cloning theorem of quantum key distribution protocols. Due to environmental phase fluctuations caused by temperature variations, atmospheric turbulences, or mechanical vibrations, active phase locking seems to be necessary for the two-channel transmission layout of USCKD. Here, the two-channel layout of USCKD is demonstrated to be an environmental noise-immune protocol especially for free space optical links, where the transmission distance is potentially unlimited if random phase noises are considered.
191 - Byoung S. Ham 2020
So far, unconditional security in key distribution processes has been confined to quantum key distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a completely different approach, the unconditionally secured classical key distribution (USCKD), has been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided by deterministic randomness via path superposition-based reversible unitary transformations in a coupled Mach-Zehnder interferometer. Here, the first experimental demonstration of the USCKD protocol is presented.
We demonstrate an on demand spatial control of excitonic magnetic lattices for the potential applications of excitonic-based quantum optical devices. A two dimensional magnetic lattice of indirect excitons can form a transition to one dimensional lat tice configuration under the influence of external magnetic bias fields. The transition is identified by measuring the spatial distribution of two dimensional photoluminance for several values of the external magnetic bias fields. The number of the trapped excitons is found to increase between sites along a perpendicular direction exhibiting two to one dimensional lattice transition. This work may apply for various controllable quantum simulations, such as superfluid-Mott-insulators, in quantum optical devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا