ترغب بنشر مسار تعليمي؟ اضغط هنا

High quality single crystals of Bi2Se3 were grown using a modified Bridgman technique, the detailed study were carried out using Raman spectroscopy and characterized by Laue diffraction and high resolution transmission electron microscopy. Polarized Raman scattering measurements were also carried out, and both the A1g and A2g phonon modes showed strong polarization effect, which is consistent with the theoretical prediction. The temperature dependent study (in the temperature range 83 K to 523 K of Raman active modes were reported and observed to follow a systematic red shift. The frequency of these phonon modes are found to vary linearly with temperature and can be explained by first order temperature co-efficient. The temperature co-efficient for A11g, E2g and A21g modes were estimated to be -1.44*10-2, -1.94*10-2 and -1.95*10-2cm-1/K respectively.
Using graphene resonator, we perform electromechanical measurements in quantum Hall regime to probe the coupling between a quantum Hall (QH) system and its mechanical motion. Mechanically perturbing the QH state through resonance modifies the DC resi stance of the system and results in a Fano-lineshape due to electronic interference. Magnetization of the system modifies the resonators equilibrium position and effective stiffness leading to changes in resonant frequency. Our experiments show that there is an intimate coupling between the quantum Hall state and mechanics - electron transport is affected by physical motion and in turn the magnetization modifies the electromechanical response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا