ترغب بنشر مسار تعليمي؟ اضغط هنا

Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build th an any universal quantum computer proposed so far. We begin this chapter by motivating boson-sampling and discussing the history of linear optics quantum computing. We then summarize the boson-sampling formalism, discuss what a sampling problem is, explain why boson-sampling is easier than linear optics quantum computing, and discuss the Extended Church-Turing thesis. Next, sampling with other classes of quantum optical states is analyzed. Finally, we discuss the feasibility of building a boson-sampling device using existing technology.
Aaronson and Arkhipov recently used computational complexity theory to argue that classical computers very likely cannot efficiently simulate linear, multimode, quantum-optical interferometers with arbitrary Fock-state inputs [Aaronson and Arkhipov, Theory Comput. 9, 143 (2013)]. Here we present an elementary argument that utilizes only techniques from quantum optics. We explicitly construct the Hilbert space for such an interferometer and show that its dimension scales exponentially with all the physical resources. We also show in a simple example just how the Schrodinger and Heisenberg pictures of quantum theory, while mathematically equivalent, are not in general computationally equivalent. Finally, we conclude our argument by comparing the symmetry requirements of multiparticle bosonic to fermionic interferometers and, using simple physical reasoning, connect the nonsimulatability of the bosonic device to the complexity of computing the permanent of a large matrix.
We show a simulation of quantum random walks with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and int roduce one, two, and threefold coincidence detection schemes. The use of Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these quantum random walks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا