ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources di scovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r~22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star-formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1443 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 677 purely-photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat Lambda-CDM cosmology, we determine Omega_M = 0.315 +/- 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7 sigmas.
Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of supernovae with their probabilities derived from their multi-band lightcurves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10^4 supernovae, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric supernova cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples which have been cut using typical selection criteria. The latter typically are either biased due to contamination or have significantly larger contours in the cosmological parameters due to small data-sets. We then apply BEAMS to the 792 SDSS-II photometric supernovae with host spectroscopic redshifts. In this case, BEAMS reduces the area of the (Omega_m,Omega_Lambda) contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 supernovae). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are Omega_m(BEAMS)=0.194pm0.07. This illustrates the potential power of BEAMS for future large photometric supernova surveys such as LSST.
We analyze the three-year SDSS-II Superernova (SN) Survey data and identify a sample of 1070 photometric SN Ia candidates based on their multi-band light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a sub set of 210 candidates having spectroscopic redshifts of their host galaxies measured, while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ~91% efficiency and with a contamination of ~6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ~20 - 40% larger than that of the spectroscopically-confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibit biases that require further investigation for precision cosmology.
ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) mathrm{SNu}r h^{2}$ ($mathrm{SNu}x = 10^{-12} L_{xsun}^{-1} mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_{-0.30-0.01}) mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is ${1.94}^{+1.31+0.043}_{-0.91-0.015}$ and ${3.02}^{+1.31+0.062}_{-1.03-0.048}$, for C4 and maxBCG clusters. The SN rate in galaxy clusters as a function of redshift...shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find $r_{L} = $ $[(0.49^{+0.15}_{-0.14}) +$ $(0.91^{+0.85}_{-0.81}) times z]$ $mathrm{SNu}B$ $h^{2}$. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies... we estimate the fraction of cluster SNe that are hostless to be $(9.4^+8._3-5.1)%$.
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z lesssim 0.3, of which 27 0 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of rV = (2.69+0.34+0.21-0.30-0.01) x10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} at a mean redshift of ~ 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r_V(z) = A_p x ((1 + z)/(1 + z0))^{ u}, over the redshift range 0.0 < z < 0.3 with z0 = 0.21, results in A_p = (3.43+0.15-0.15) x 10^{-5} SNe yr^{-1} Mpc-3 (H0 /(70 km s^{-1} Mpc^{-1}))^{3} and u = 2.04+0.90-0.89.
Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for co smological study. We present a light-curve fitting technique for SN Ia photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this LCFIT+Z technique within the frameworks of the MLCS2k2 and SALT-II light-curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the SDSS-II Supernova Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including SDSS, SNLS, and LSST. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا