ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimodal learning for generative models often refers to the learning of abstract concepts from the commonality of information in multiple modalities, such as vision and language. While it has proven effective for learning generalisable representati ons, the training of such models often requires a large amount of related multimodal data that shares commonality, which can be expensive to come by. To mitigate this, we develop a novel contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between related and unrelated multimodal data. We show in experiments that our method enables data-efficient multimodal learning on challenging datasets for various multimodal VAE models. We also show that under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
Learning generative models that span multiple data modalities, such as vision and language, is often motivated by the desire to learn more useful, generalisable representations that faithfully capture common underlying factors between the modalities. In this work, we characterise successful learning of such models as the fulfillment of four criteria: i) implicit latent decomposition into shared and private subspaces, ii) coherent joint generation over all modalities, iii) coherent cross-generation across individual modalities, and iv) improved model learning for individual modalities through multi-modal integration. Here, we propose a mixture-of-experts multimodal variational autoencoder (MMVAE) to learn generative models on different sets of modalities, including a challenging image-language dataset, and demonstrate its ability to satisfy all four criteria, both qualitatively and quantitatively.
Existing methods for structure discovery in time series data construct interpretable, compositional kernels for Gaussian process regression models. While the learned Gaussian process model provides posterior mean and variance estimates, typically the structure is learned via a greedy optimization procedure. This restricts the space of possible solutions and leads to over-confident uncertainty estimates. We introduce a fully Bayesian approach, inferring a full posterior over structures, which more reliably captures the uncertainty of the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا