ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible phase transition of strongly interacting matter from hadron to a quark-gluon plasma state have in the past received considerable interest. The clustering of color sources provides a framework of the the partonic interactions in the initial s tage of the collisions. The onset of de-confinement transition is identified by the spanning percolation cluster in 2D percolation. In this talk results are presented both for the multiplicity and the elliptic flow at RHIC and LHC energies. The thermodynamic quantities temperature, equation of state and transport coefficient are obtained in the framework of clustering of color sources. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).
Possible phase transition of strongly interacting matter from hadron to a quark-gluon plasma state have in the past received c onsiderable interest. It has been suggested that this problem might be treated by percolation theory. The clustering of col or sources with percolation (CSPM) is used to determine the equation of state (EOS) and the transport coefficient of the Quark-Gl uon Plasma (QGP) produced in central A-A collisions at RHIC and LHC energies.
Possible phase transition of strongly interacting matter from hadron to a Quark-Gluon Plasma (QGP) state have in the p ast received considerable interest. It has been suggested that this problem might be treated by percolation theory. Th e Color Stri ng Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at RHIC energies. The bulk thermodynamic quantities- energy density, entropy density and t he sound velocity- are obtained in the framework of CSPM. It is shown that the results are in excellent agreement with the recent lattice QCD calculations(LQCD).
Forward-backward multiplicity correlations have been measured with the STAR detector for Au+Au, Cu+Cu and {it p+p} collisions at $sqrt{s_{NN}}$ = 200 GeV. A strong, long-range correlation is observed for central heavy ion collisions that vanishes in semi-peripheral events and {it pp} collisions. There is no apparent scaling of correlation strength with the number of participants involved in the collision. Both the Dual Parton Model and the Color Glass condensate indicate that the long range correlations are due to multiple parton interactions. This suggests that the dense partonic matter might have been created in mid-central and central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا