ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Laboratory Radio Frequency (RF) measurements of the instrument bandpass often require complex test setups and are subject to a number of systematic effects driven by thermal issues and impedance matching, particularly if cryogenic operation is involved. In this paper we present an approach to modeling radiometers bandpasses by integrating simulations and RF measurements of individual components. This method is based on QUCS (Quasi Universal Circuit Simulator), an open-source circuit simulator, which gives the flexibility of choosing among the available devices, implementing new analytical software models or using measured S-parameters. Therefore an independent estimate of the instrument bandpass is achieved using standard individual component measurements and validated analytical simulations. In order to automate the process of preparing input data, running simulations and exporting results we developed the Python package python-qucs and released it under GNU Public License. We discuss, as working cases, bandpass response modeling of the COFE and Planck Low Frequency Instrument (LFI) radiometers and compare results obtained with QUCS and with a commercial circuit simulator software. The main purpose of bandpass modeling in COFE is to optimize component matching, while in LFI they represent the best estimation of frequency response, since end-to-end measurements were strongly affected by systematic effects.
The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarime- ter designed to measure the low-frequency and low-l characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 $mu K / deg^2$ from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا