ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock ca talogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mocks can be usefully applied. Nevertheless, careful comparisons show that our new mocks accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.
We introduce a probabilistic approach to the problem of counting dwarf satellites around host galaxies in databases with limited redshift information. This technique is used to investigate the occurrence of satellites with luminosities similar to the Magellanic Clouds around hosts with properties similar to the Milky Way in the object catalog of the Sloan Digital Sky Survey. Our analysis uses data from SDSS Data Release 7, selecting candidate Milky-Way-like hosts from the spectroscopic catalog and candidate analogs of the Magellanic Clouds from the photometric catalog. Our principal result is the probability for a Milky-Way-like galaxy to host N_{sat} close satellites with luminosities similar to the Magellanic Clouds. We find that 81 percent of galaxies like the Milky Way are have no such satellites within a radius of 150 kpc, 11 percent have one, and only 3.5 percent of hosts have two. The probabilities are robust to changes in host and satellite selection criteria, background-estimation technique, and survey depth. These results demonstrate that the Milky Way has significantly more satellites than a typical galaxy of its luminosity; this fact is useful for understanding the larger cosmological context of our home galaxy.
We use data drawn from the DEEP2 Galaxy Redshift Survey to investigate the relationship between local galaxy density, stellar mass, and rest-frame galaxy color. At z ~ 0.9, we find that the shape of the stellar mass function at the high-mass (log (M* /Msun) > 10.1) end depends on the local environment, with high-density regions favoring more massive systems. Accounting for this stellar mass-environment relation (i.e., working at fixed stellar mass), we find a significant color-density relation for galaxies with 10.6 < log(M*/Msun) < 11.1 and 0.75 < z < 0.95. This result is shown to be robust to variations in the sample selection and to extend to even lower masses (down to log(M*/Msun) ~ 10.4). We conclude by discussing our results in comparison to recent works in the literature, which report no significant correlation between galaxy properties and environment at fixed stellar mass for the same redshift and stellar mass domain. The non-detection of environmental dependence found in other data sets is largely attributable to their smaller samples size and lower sampling density, as well as systematic effects such as inaccurate redshifts and biased analysis techniques. Ultimately, our results based on DEEP2 data illustrate that the evolutionary state of a galaxy at z ~ 1 is not exclusively determined by the stellar mass of the galaxy. Instead, we show that local environment appears to play a distinct role in the transformation of galaxy properties at z > 1.
91 - A. Georgakakis 2008
We explore the role of the group environment in the evolution of AGN at the redshift interval 0.7<z<1.4, by combining deep Chandra observations with extensive optical spectroscopy from the All-wavelength Extended Groth strip International Survey (AEG IS). The sample consists of 3902 optical sources and 71 X-ray AGN. Compared to the overall optically selected galaxy population, X-ray AGN are more frequently found in groups at the 99% confidence level. This is partly because AGN are hosted by red luminous galaxies, which are known to reside, on average, in dense environments. Relative to these sources, the excess of X-ray AGN in groups is significant at the 91% level only. Restricting the sample to 0.7<z<0.9 and M_B<-20mag in order to control systematics we find that X-ray AGN represent (4.7pm1.6) and (4.5pm1.0)% of the optical galaxy population in groups and in the field respectively. These numbers are consistent with the AGN fraction in low redshift clusters, groups and the field. The results above, although affected by small number statistics, suggest that X-ray AGN are spread over a range of environments, from groups to the field, once the properties of their hosts (e.g. colour, luminosity) are accounted for. There is also tentative evidence, significant at the 98% level, that the field produces more X-ray luminous AGN compared to groups, extending similar results at low redshift to z~1. This trend may be because of either cold gas availability or the nature of the interactions occurring in the denser group environment (i.e. prolonged tidal encounters).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا