ترغب بنشر مسار تعليمي؟ اضغط هنا

73 - Brenda L. Frye 2012
We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i_775= 27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of ~4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M_* = 2 x 10^9 solar masses) with a high specific star formation rate (~20 /Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H)=8.8 +/- 0.2). We break the continuous line-emitting region of this giant arc into seven ~1kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1kpc have a placement on the blue HII region excitation diagram with f([OIII])/f(Hbeta) and f([NeIII])/f(Hbeta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxys extended tail, possibly instigated by a recent galaxy interaction.
68 - Brenda L. Frye 2008
We present a high signal-to-noise spectrum of a bright galaxy at z = 4.9 in 14 h of integration on VLT FORS2. This galaxy is extremely bright, i_850 = 23.10 +/- 0.01, and is strongly-lensed by the foreground massive galaxy cluster Abell 1689 (z=0.18) . Stellar continuum is seen longward of the Ly-alpha emission line at ~7100 AA, while intergalactic H I produces strong absorption shortward of Ly-alpha. Two transmission spikes at ~6800 Angstroms (A) and ~7040 A are also visible, along with other structures at shorter wavelengths. Although fainter than a QSO, the absence of a strong central ultraviolet flux source in this star forming galaxy enables a measurement of the H I flux transmission in the intergalactic medium (IGM) in the vicinity of a high redshift object. We find that the effective H I optical depth of the IGM is remarkably high within a large 14 Mpc (physical) region surrounding the galaxy compared to that seen towards QSOs at similar redshifts. Evidently, this high-redshift galaxy is located in a region of space where the amount of H I is much larger than that seen at similar epochs in the diffuse IGM. We argue that observations of high-redshift galaxies like this one provide unique insights on the nascent stages of baryonic large-scale structures that evolve into the filamentary cosmic web of galaxies and clusters of galaxies observed in the present universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا