ترغب بنشر مسار تعليمي؟ اضغط هنا

HII regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. We aim to determine the monochromatic IR band that most accurately traces the bolometric IR flux (TIR), which can then be used to estimate an obscured SFR. We present the spatial analysis, via aperture/annulus photometry, of 16 LMC and 16 SMC HII region complexes using the Spitzer IRAC and MIPS bands. UV rocket data and SHASSA H-alpha data are also included. We find that nearly all of the LMC and SMC HII region SEDs peak around 70um, from ~10 to ~400 pc from the central sources. As a result, the sizes of HII regions as probed by 70um is approximately equal to the sizes as probed by TIR (about 70 pc in radius); the radial profile of the 70um flux, normalized by TIR, is constant at all radii (70um ~ 0.45 TIR); the 1-sigma standard deviation of the 70um fluxes, normalized by TIR, is a lower fraction of the mean (0.05 to 0.12 out to ~220 pc) than the normalized 8, 24, and 160um normalized fluxes (0.12 to 0.52); and these results are invariant between the LMC and SMC. From these results, we argue that 70um is the most suitable IR band to use as a monochromatic obscured star formation indicator because it most accurately reproduces the TIR of HII regions in the LMC and SMC and over large spatial scales. We also explore the general trends of the 8, 24, 70, and 160um bands in the LMC and SMC HII region SEDs, radial surface brightness profiles, sizes, and normalized (by TIR) radial flux profiles. We derive an obscured SFR equation that is modified from the literature to use 70um luminosity, SFR(Mo/yr) = 9.7(0.7)x10^{-44} L(70)(ergs/s), which is applicable from 10 to 300 pc distance from the center of an HII region.
200 - Brandon Lawton 2008
We present equivalent width measurements and limits of six diffuse interstellar bands (DIBs) in seven damped Ly-alpha absorbers (DLAs) over the redshift range 0.091<z<0.524, sampling 20.3<log[N(HI)]<21.7. DIBs were detected in only one of the seven D LAs, that which has the highest reddening and metallicity. Based upon the Galactic DIB-N(HI) relation, the 6284 DIB equivalent width upper limits in four of the seven DLAs are a factor of 4-10 times below the 6284 DIB equivalent widths observed in the Milky Way, but are not inconsistent with those present in the Magellanic Clouds. Assuming the Galactic DIB-E(B-V) relation, we determine reddening upper limits for the DLAs in our sample. Based upon the E(B-V) limits, the gas-to-dust ratios, N(HI)/E(B-V), of the four aforementioned DLAs are at least 5 times higher than that of the Milky Way ISM. The ratios of two other DLAs are at least a factor of a few times higher. The best constraints on reddening derive from the upper limits for the 5780 and 6284 DIBs, which yield E(B-V)<0.08 for four of the seven DLAs. Our results suggest that, in DLAs, quantities related to dust, such as reddening and metallicity, appear to have a greater impact on DIB strengths than does HI gas abundance; the organic molecules likely responsible for DIBs in DLA selected sightlines are underabundant relative to sightlines in the Galaxy of similarly high N(HI). With regards to the study of astrobiology, this could have implications for the abundance of organic molecules in redshifted galaxies. However, since DLAs are observed to have low reddening, selection bias likely plays a role in the apparent underabundance of DIBs in DLAs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا