ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce the study of forcing sets in mathematical origami. The origami material folds flat along straight line segments called creases, each of which is assigned a folding direction of mountain or valley. A subset $F$ of creases is forcing if th e global folding mountain/valley assignment can be deduced from its restriction to $F$. In this paper we focus on one particular class of foldable patterns called Miura-ori, which divide the plane into congruent parallelograms using horizontal lines and zig-zag vertical lines. We develop efficient algorithms for constructing a minimum forcing set of a Miura-ori map, and for deciding whether a given set of creases is forcing or not. We also provide tight bounds on the size of a forcing set, establishing that the standard mountain-valley assignment for the Miura-ori is the one that requires the most creases in its forcing sets. Additionally, given a partial mountain/valley assignment to a subset of creases of a Miura-ori map, we determine whether the assignment domain can be extended to a locally flat-foldable pattern on all the creases. At the heart of our results is a novel correspondence between flat-foldable Miura-ori maps and $3$-colorings of grid graphs.
This paper studies problems related to visibility among points in the plane. A point $x$ emph{blocks} two points $v$ and $w$ if $x$ is in the interior of the line segment $bar{vw}$. A set of points $P$ is emph{$k$-blocked} if each point in $P$ is ass igned one of $k$ colours, such that distinct points $v,win P$ are assigned the same colour if and only if some other point in $P$ blocks $v$ and $w$. The focus of this paper is the conjecture that each $k$-blocked set has bounded size (as a function of $k$). Results in the literature imply that every 2-blocked set has at most 3 points, and every 3-blocked set has at most 6 points. We prove that every 4-blocked set has at most 12 points, and that this bound is tight. In fact, we characterise all sets ${n_1,n_2,n_3,n_4}$ such that some 4-blocked set has exactly $n_i$ points in the $i$-th colour class. Amongst other results, for infinitely many values of $k$, we construct $k$-blocked sets with $k^{1.79...}$ points.
We prove the following generalised empty pentagon theorem: for every integer $ell geq 2$, every sufficiently large set of points in the plane contains $ell$ collinear points or an empty pentagon. As an application, we settle the next open case of the big line or big clique conjecture of Kara, Por, and Wood [emph{Discrete Comput. Geom.} 34(3):497--506, 2005].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا