ترغب بنشر مسار تعليمي؟ اضغط هنا

Training deep neural models in the presence of corrupted supervision is challenging as the corrupted data points may significantly impact the generalization performance. To alleviate this problem, we present an efficient robust algorithm that achieve s strong guarantees without any assumption on the type of corruption and provides a unified framework for both classification and regression problems. Unlike many existing approaches that quantify the quality of the data points (e.g., based on their individual loss values), and filter them accordingly, the proposed algorithm focuses on controlling the collective impact of data points on the average gradient. Even when a corrupted data point failed to be excluded by our algorithm, the data point will have a very limited impact on the overall loss, as compared with state-of-the-art filtering methods based on loss values. Extensive experiments on multiple benchmark datasets have demonstrated the robustness of our algorithm under different types of corruption.
75 - Xiao-Lu Yu , Boyang Liu 2021
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong -coupling regime. In the weakly interacting regime the second order perturbation theory is performed. In the strong coupling regime we use a simple variational treatment. The analytical approximations to the energy and effective mass of the polarons are constructed. Especially, a transition from the mobile state to the self-trapping state of the polaron in the strong coupling regime is discussed. We also estimate the signatures of polaron effects in spinor BEC for the future experiments.
196 - Xinloong Han , Boyang Liu 2020
The growth rate of the out-of-time-ordered correlator in a N-flavor Fermi gas is investigated and the Lyapunove exponent $lambda_L$ is calculated to the order of $1/N$. We find that the Lyapunove exponent monotonically increases as the the interactio n strength increases from the BCS limit to the unitary region. At the unitarity the Lyapunove exponent increases while the temperature drops and it can reach to the order of $lambda_Lsim T$ around the critical temperature for the $N=1$ case. The system scrambles faster for stronger pairing fluctuations. At the BCS limit, the Lyapunov exponent behaviors as $lambda_Lpropto e^{mu/T} a^2_s T^2/N$.
Cold atomic hydrogen clouds are the precursors of molecular clouds. Due to self-absorption, the opacity of cold atomic hydrogen may be high, and this gas may constitute an important mass component of the interstellar medium (ISM). Atomic hydrogen gas can be cooled to temperatures much lower than found in the cold neutral medium (CNM) through collisions with molecular hydrogen. In this paper, we search for HI Narrow Self-Absorption (HINSA) features in the Large Magellanic Cloud (LMC) as an indicator of such cold HI clouds, and use the results to quantify atomic masses and atomic-to-molecular gas ratio. Our search for HINSA features was conducted towards molecular clouds in the LMC using the ATCA+Parkes HI survey and the MAGMA CO survey. HINSA features are prevalent in the surveyed sightlines. This is the first detection of HINSA in an external galaxy. The HINSA-HI/$rm{H}_{2}$ ratio in the LMC varies from 0.5e{-3} to 3.4e{-3} (68% interval), with a mean value of $(1.31 pm 0.03)$e{-3}, after correcting for the effect of foreground HI gas. This is similar to the Milky Way value and indicates that similar fractions of cold gas exist in the LMC and the Milky Way, despite their differing metallicities, dust content and radiation fields. The low ratio also confirms that, as with the Milky Way, the formation timescale of molecular clouds is short. The ratio shows no radial gradient, unlike the case for stellar metallicity. No correlation is found between our results and those from previous HI absorption studies of the LMC.
We present the first results from the Small Magellanic Cloud portion of a new Australia Telescope Compact Array (ATCA) HI absorption survey of both of the Magellanic Clouds, comprising over 800 hours of observations. Our new HI absorption line data a llow us to measure the temperature and fraction of cold neutral gas in a low metallicity environment. We observed 22 separate fields, targeting a total of 55 continuum sources against 37 of which we detected HI absorption; from this we measure a column density weighted mean average spin temperature of $<T_{s}>=150$ K. Splitting the spectra into individual absorption line features, we estimate the temperatures of different gas components and find an average cold gas temperature of $sim{30}$ K for this sample, lower than the average of $sim{40}$ K in the Milky Way. The HI appears to be evenly distributed throughout the SMC and we detect absorption in $67%$ of the lines of sight in our sample, including some outside the main body of the galaxy ($N_{text{HI}}>2times{10^{21}}$ cm$^{-2}$). The optical depth and temperature of the cold neutral atomic gas shows no strong trend with location spatially or in velocity. Despite the low metallicity environment, we find an average cold gas fraction of $sim{20%}$, not dissimilar from that of the Milky Way.
We investigate the single-atom transport in a two-leg ladder with only two rungs, which together with the legs, enclose an artificial magnetic flux. Here, the atoms on the two legs possess opposite onsite energies that produce an energy offeset. We f ind that the atom incoming from the left leg can experience from blockade to tranparency via modifying the onsite energy, hopping strength, or magnetic flux, which can be potentially used for a quantum switcher. Furthermore, the atom incoming from the left leg can also be perfectly routed into the right leg, when, intriguingly, the outgoing atom in the R channel possesses a wavevector that can be modulated by the magnetic flux. The result may be potentially used for the interface that controls the communication between two individual quantum devices of cold atoms. The method can also be generalized to other artificial quantum systems, such as superconducting quantum circuit system, optomechanical system, etc.
We theoretically investigate the thermo-particle transport properties of an unitary Fermi gas be- tween two reservoirs connected by a quantum point contact. We find several distinguished properties that are qualitatively different from those of weak or non-interacting gas systems. The particle trans- port figure of merit is drastically enhanced in the unitary regime and it increases as the transmission coefficient increases, exactly opposite to the behavior in the weak or non-interacting gas systems. The Lorentz number violates the Wiedemann-Franz law, demonstrating the breakdown of Fermi liquid. These transport properties are the hallmarks of the unitary Fermi gas and are attributed to the existence of preformed Cooper pairs.
Recent advances in experimental techniques allow one to create a quantum point contact between two Fermi superfluids in cold atomic gases with a tunable transmission coefficient. In this Letter we propose that three distinct behaviors of charge trans ports between two Fermi superfluids can be realized in this single setup, which are the multiple Andreev reflection, the self-trapping and the Josephson oscillation. We investigate the dynamics of atom number difference between two reservoirs for different initial conditions and different transmission coefficients, and present a coherent picture of how the crossover between different regimes takes place. Our results can now be directly verified in current experimental system.
270 - Boyang Liu , Hui Zhai , 2016
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the boson ic molecules using the Keldysh formalism. Focusing on the regime above the Fermi superfluid transition temperature, we find that the fermionic contribution to the conductance is reduced by interaction compared with the quantized value for the non-interacting case; while the bosonic contribution to the conductance exhibits a plateau with non-universal values that is larger than the quantized conductance. This feature is particularly profound at temperature close to the superfluid transition. We emphasize that the enhanced conductance arises because of the bosonic nature of closed channel molecules and the low-dimensionality of the quantum point contact.
We study the observability of the Higgs mode in BEC-BCS crossover. The observability of Higgs mode is investigated by calculating the spectral weight functions of the amplitude fluctuation below the critical transition temperature. At zero temperatur e, we find that there are two sharp peaks on the spectral function of the amplitude fluctuation attributed to Goldstone and Higgs modes respectively. As the system goes from BCS to BEC side, there is strong enhancement of spectral weight transfer from the Higgs to Goldstone mode. However, even at the unitary regime where the Lorentz invariance is lost, the sharp feature of Higgs mode still exists. We specifically calculate the finite temperature spectral function of amplitude fluctuation at the unitary regime and show that the Higgs mode is observable at the temperature that present experiments can reach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا