ترغب بنشر مسار تعليمي؟ اضغط هنا

In this note we study the generation of attractive oscillations of a class of mechanical systems with underactuation one. The proposed design consists of two terms, i.e., a partial linearizing state feedback, and an immersion and invariance orbital s tabilization controller. The first step is adopted to simplify analysis and design, however, bringing an additional difficulty that the model losses Euler-Lagrange structures after the collocated pre-feedback. To address this, we propose a constructive solution to the orbital stabilization problem via a smooth controller in an analytic form, and the model class identified in the paper is characterized via some easily apriori verifiable assumptions on the inertia matrix and potential energy.
74 - Bowen Yi , Chi Jin , Lei Wang 2021
In this paper we propose a novel observer to solve the problem of visual simultaneous localization and mapping, using the information of only the bearing vectors of landmarks observed from a single monocular camera and body-fixed velocities. The syst em state evolves on the manifold $SE(3)times mathbb{R}^{3n}$, on which we design dynamic extensions carefully in order to generate an invariant foliation, such that the problem is reformulated into online parameter identification. Then, following the recently introduced parameter estimation-based observer, we provide a novel and simple solution to address the problem. A notable merit is that the proposed observer guarantees almost global asymptotic stability requiring neither persistent excitation nor uniform complete observability, which, however, are widely adopted in the existing works.
In this paper we prove new connections between two frameworks for analysis and control of nonlinear systems: the Koopman operator framework and contraction analysis. Each method, in different ways, provides exact and global analyses of nonlinear syst ems by way of linear systems theory. The main results of this paper show equivalence between contraction and Koopman approaches for a wide class of stability analysis and control design problems. In particular: stability or stablizability in the Koopman framework implies the existence of a contraction metric (resp. control contraction metric) for the nonlinear system. Further in certain cases the converse holds: contraction implies the existence of a set of observables with which stability can be verified via the Koopman framework. We provide results for the cases of autonomous and time-varying systems, as well as orbital stability of limit cycles. Furthermore, the converse claims are based on a novel relation between the Koopman method and construction of a Kazantzis-Kravaris-Luenberger observer. We also provide a byproduct of the main results, that is, a new method to learn contraction metrics from trajectory data via linear system identification.
In this paper, we propose a new approach to design globally convergent reduced-order observers for nonlinear control systems via contraction analysis and convex optimization. Despite the fact that contraction is a concept naturally suitable for state estimation, the existing solutions are either local or relatively conservative when applying to physical systems. To address this, we show that this problem can be translated into an off-line search for a coordinate transformation after which the dynamics is (transversely) contracting. The obtained sufficient condition consists of some easily verifiable differential inequalities, which, on one hand, identify a very general class of detectable nonlinear systems, and on the other hand, can be expressed as computationally efficient convex optimization, making the design procedure more systematic. Connections with some well-established approaches and concepts are also clarified in the paper. Finally, we illustrate the proposed method with several numerical and physical examples, including polynomial, mechanical, electromechanical and biochemical systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا