ترغب بنشر مسار تعليمي؟ اضغط هنا

We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the gamma-ray emitting region is extended. These solutions would resolve a long-standing issue how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.
There is a robust upper limit on the energy of synchrotron radiation in high-energy astrophysics: $ sim m_{rm e} c^2 /alpha$, where $alpha = 1/137$ is the fine structure constant and the value refers to the comoving frame of the fluid. This is the ma ximal energy of synchrotron photons which can be emitted by an electron having an arbitrarily high initial energy after it turns by angle $sim pi$ in the magnetic field. This upper limit can be naturally reached if the converter mechanism contributes to the jet radiation and can be imprinted in spectra of some blazars as a cutoff or a dip in the GeV range. We use numerical simulations to probe the range of parameters of a radiating jet where the ultimate synchrotron cutoff appears. We reproduce the variety of spectra depending on the source luminosity and on the scale of the emission site. We also compare our results with the EGRET blazar spectra in order to illustrate that agreement is possible but still not statistically significant. The predicted feature, if it exists, should be observed by {it Fermi} in spectra of some blazars.
Photon breeding in relativistic jets involves multiplication of high-energy photons propagating from the jet to the external environment and back with the conversion into electron-positron pairs. The exponential growth of the energy density of these photons is a super-critical process powered by the bulk energy of the jet. The efficient deceleration of the jet outer layers creates a structured jet morphology with the fast spine and slow sheath. In initially fast and high-power jets even the spine can be decelerated efficiently leading to very high radiative efficiencies of conversion of the jet bulk energy into radiation. The decelerating, structured jets have angular distribution of radiation significantly broader than that predicted by a simple blob model with a constant Lorentz factor. This reconciles the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at VLBI scales as well as the low jet Lorentz factors required by the observed statistics and luminosity ratio of Fanaroff-Riley I radio galaxies and BL Lac objects. Photon breeding produces a population of high-energy leptons in agreement with the constraints on the electron injection function required by spectral fits of the TeV blazars. Relativistic pairs created outside the jet and emitting gamma-rays by inverse Compton process might explain the relatively high level of the TeV emission from the misaligned jet in the radio galaxies. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of the spectral peaks towards lower energies with increasing luminosity). The mechanism is very robust and can operate in various environments characterised by the high photon density.
Supercriticality of the same kind as that in a nuclear pile can take place in high-energy astrophysical objects producing a number of impressive effects. For example, it could cause an explosive release of the energy of a cloud of ultrarelativistic p rotons into radiation. More certainly, supercriticality should be responsible for energy dissipation of very energetic relativistic fluids such as ultrarelativistic shocks in gamma-ray bursts and jets in active galactic nuclei (AGNs). In this case, the photon breeding process operates. It is a kind of the converter mechanism with the high-energy photons and e^+ e^- pairs converting into each other via pair production and inverse Compton scattering. Under certain conditions, which should be satisfied in powerful AGNs, the photon breeding mechanism becomes supercritical: the high-energy photons breed exponentially until their feedback on the fluid changes its velocity pattern. Then the system comes to a self-adjusting near-critical steady state. Monte-Carlo simulations with the detailed treatment of particle propagation and interactions demonstrate that a jet with the Lorentz factor Gamma ~ 20 can radiate away up to a half of its total energy and for Gamma=40 the radiation efficiency can be up to 80 per cent. Outer layers of the jet decelerate down to a moderate Lorentz factor 2-4, while the spine of the jet has the final Lorentz factor in the range 10-20 independently on the initial Gamma. Such sharp deceleration under the impact of radiation must cause a number of interesting phenomena such as formation of internal shocks and an early generation of turbulence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا