ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kakeya set in $mathbb{F}_q^n$ is a set containing a line in every direction. We show that every Kakeya set in $mathbb{F}_q^n$ has density at least $1/2^{n-1}$, matching the construction by Dvir, Kopparty, Saraf and Sudan.
57 - Boris Bukh 2021
The Turan problem asks for the largest number of edges in an $n$-vertex graph not containing a fixed forbidden subgraph $F$. We construct a new family of graphs not containing $K_{s,t}$, for $t= C^s$, with $Omega(n^{2-1/s})$ edges matching the upper bound of Kovari, Sos and Turan.
237 - Boris Bukh , Ting-Wei Chao 2021
Digital nets (in base $2$) are the subsets of $[0,1]^d$ that contain the expected number of points in every not-too-small dyadic box. We construct sets that contain almost the expected number of points in every such box, but which are exponentially s maller than the digital nets. We also establish a lower bound on the size of such almost nets.
124 - Boris Bukh , Zichao Dong 2020
We consider the expected length of the longest common subsequence between two random words of lengths $n$ and $(1-varepsilon)kn$ over $k$-symbol alphabet. It is well-known that this quantity is asymptotic to $gamma_{k,varepsilon} n$ for some constant $gamma_{k,varepsilon}$. We show that $gamma_{k,varepsilon}$ is of the order $1-cvarepsilon^2$ uniformly in $k$ and $varepsilon$. In addition, for large $k$, we give evidence that $gamma_{k,varepsilon}$ approaches $1-tfrac{1}{4}varepsilon^2$, and prove a matching lower bound.
219 - Boris Bukh , Ting-Wei Chao 2020
We show that, for every set of $n$ points in the $d$-dimensional unit cube, there is an empty axis-parallel box of volume at least $Omega(d/n)$ as $ntoinfty$ and $d$ is fixed. In the opposite direction, we give a construction without an empty axis-pa rallel box of volume $O(d^2log d/n)$. These improve on the previous best bounds of $Omega(log d/n)$ and $O(2^{7d}/n)$ respectively.
Given a finite set $A subseteq mathbb{R}^d$, points $a_1,a_2,dotsc,a_{ell} in A$ form an $ell$-hole in $A$ if they are the vertices of a convex polytope which contains no points of $A$ in its interior. We construct arbitrarily large point sets in gen eral position in $mathbb{R}^d$ having no holes of size $O(4^ddlog d)$ or more. This improves the previously known upper bound of order $d^{d+o(d)}$ due to Valtr. The basic version of our construction uses a certain type of equidistributed point sets, originating from numerical analysis, known as $(t,m,s)$-nets or $(t,s)$-sequences, yielding a bound of $2^{7d}$. The better bound is obtained using a variant of $(t,m,s)$-nets, obeying a relaxed equidistribution condition.
Let $a_1,dotsc,a_n$ be a permutation of $[n]$. Two disjoint order-isomorphic subsequences are called emph{twins}. We show that every permutation of $[n]$ contains twins of length $Omega(n^{3/5})$ improving the trivial bound of $Omega(n^{1/2})$. We al so show that a random permutation contains twins of length $Omega(n^{2/3})$, which is sharp.
Let $W^{(n)}$ be the $n$-letter word obtained by repeating a fixed word $W$, and let $R_n$ be a random $n$-letter word over the same alphabet. We show several results about the length of the longest common subsequence (LCS) between $W^{(n)}$ and $R_n $; in particular, we show that its expectation is $gamma_W n-O(sqrt{n})$ for an efficiently-computable constant $gamma_W$. This is done by relating the problem to a new interacting particle system, which we dub frog dynamics. In this system, the particles (`frogs) hop over one another in the order given by their labels. Stripped of the labeling, the frog dynamics reduces to a variant of the PushTASEP. In the special case when all symbols of $W$ are distinct, we obtain an explicit formula for the constant $gamma_W$ and a closed-form expression for the stationary distribution of the associated frog dynamics. In addition, we propose new conjectures about the asymptotic of the LCS of a pair of random words. These conjectures are informed by computer experiments using a new heuristic algorithm to compute the LCS. Through our computations, we found periodic words that are more random-like than a random word, as measured by the LCS.
320 - Boris Bukh , Anish Sevekari 2019
We show that, for every linear ordering of $[2]^n$, there is a large subcube on which the ordering is lexicographic. We use this to deduce that every long sequence contains a long monotone subsequence supported on an affine cube. More generally, we prove an analogous result for linear orderings of $[k]^n$. We show that, for every such ordering, there is a large subcube on which the ordering agrees with one of approximately $frac{(k-1)!}{2(ln 2)^k}$ orderings.
111 - Boris Bukh , Michael Tait 2018
The theta graph $Theta_{ell,t}$ consists of two vertices joined by $t$ vertex-disjoint paths of length $ell$ each. For fixed odd $ell$ and large $t$, we show that the largest graph not containing $Theta_{ell,t}$ has at most $c_{ell} t^{1-1/ell}n^{1+1 /ell}$ edges and that this is tight apart from the value of $c_{ell}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا