ترغب بنشر مسار تعليمي؟ اضغط هنا

We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5pm0.3)times10^{31}$ proton$times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_ {-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 times 10^{-9}$ (5.9$sigma$). A geo-neutrino signal from the mantle is obtained at 98% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
If heavy neutrinos with mass $m_{ u_{H}}geq$2$ m_e $ are produced in the Sun via the decay ${^8rm{B}} rightarrow {^8rm{Be}} + e^+ + u_H$ in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light n eutrino $ u_{H}rightarrow u_{L}+e^++e^-$. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV $leq m_{ u_{H}} le$ 14 MeV to be $|U_{eH}|^2leq (10^{-3}-4times10^{-6})$ respectively. These are tighter limits on the mixing parameters than obtained in previous experiments at nuclear reactors and accelerators.
We have studied the alpha decays of 214Po into 210Pb and of 212Po into 208Pb tagged by the coincidence with the preceding beta decays from 214Bi and 212Bi, respectively. The employed 222Rn, 232Th, and 220Rn sources were sealed inside quartz vials and inserted in the Counting Test Facility at the underground Gran Sasso National Laboratory in Italy. We find that the mean lifetime of 214Po is (236.00 +- 0.42(stat) +- 0.15(syst)) mu s and that of 212Po is (425.1 +- 0.9(stat) +- 1.2(syst)) ns. Our results, obtained from data with signal-to-background ratio larger than 1000, reduce the overall uncertainties and are compatible with previous measurements.
Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. Th is paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements.
167 - Davide DAngelo 2011
Borexino is an organic liquid scintillator detector located in the underground Gran Sasso National Laboratory (Italy). It is devoted mainly to the real time spectroscopy of low energy solar neutrinos via the elastic scattering on electrons in the tar get mass. The data taking campaign started in 2007 and led to key measurements of 7}Be and 8B solar neutrinos as well as antineutrinos from the earth (geo-neutrinos) and from nuclear power reactors. Borexino is also a powerful tool for the study of cosmic muons that penetrate the Gran Sasso rock coverage and thereby induced signals such as neutrons and radioactive isotopes which are today of critical importance for upcoming dark matter and neutrino physics experiments. Having reached 4y of continuous data taking we analyze here the muon signal and its possible modulation. The muon flux is measured to be (3.41+-0.01)E-4/m2/s. A modulation of this signal with a yearly period is observed with an amplitude of (1.29+-0.07)% and a phase of (179+-6) d, corresponding to June 28th. Muon rate fluctuations are compared to fluctuations in the atmospheric temperature on a daily base, exploiting the most complete atmospheric data and models available. The distributions are shown to be positively correlated and the effective temperature coefficient is measured to be alpha_T = 0.93 +- 0.04. This result is in good agreement with the expectations of the kaon-inclusive model at the laboratory site and represents an improvement over previous measurements performed at the same depth.
Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.
Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and p articularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا