ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the recently developed fractional Virasoro algebra cite{la_nave_fractional_2019}, we construct a class of nonlocal CFTs with OPEs of the form $T_k(z)Phi(w) sim frac{ h_gamma Phi}{(z-w)^{1+gamma}}+frac{partial_w^gamma Phi}{z-w},$ and $T_k(z)T_k( w) sim frac{ c_kZ_gamma}{(z-w)^{3gamma+1}}+frac{(1+gamma ) T_k(w)}{(z-w)^{1+gamma}}+frac{partial^gamma_w T_k}{z-w}$ which naturally results in a central charge, $c_k$, that is state-dependent, with $k$ indexing a particular grading. Our work indicates that only those theories which are nonlocal have state-dependent central charges, regardless of the pseudo-differential operator content of their action. All others, including certain fractional Laplacian theories, can be mapped onto an equivalent local one using a suitable covering/field redefinition. In addition, we discuss various perturbative implications of deformations of fractional CFTs that realize a fractional Virasoro algebra through the lense of a degree/state-dependent refinement of the 2 dimensional C-theorem.
130 - Bora Basa , Gabriele La Nave , 2019
From the partition function for two classes of classically non-local actions containing the fractional Laplacian, we show that as long as there exists a suitable (non-local) Hilbert-space transform the underlying action can be mapped onto a purely lo cal theory. In all such cases the partition function is equivalent to that of a local theory and an area law for the entanglement entropy obtains. When such a reduction fails, the entanglement entropy deviates strongly from an area law and can in some cases scale as the volume. As these two criteria are coincident, we conjecture that they are equivalent and provide the ultimate test for locality of Gaussian theories rather than a simple inspection of the explicit operator content.
Weyl semimetals are a newly discovered class of materials that host relativistic massless Weyl fermions as their low-energy bulk excitations. Among this new class of materials, there exist two general types of semimetals that are of particular intere st: type-I Weyl semimetals, that have broken inversion or time-reversal symmetry symmetry, and type-II Weyl semimetals, that additionally breaks Lorentz invariance. In this work, we use Born approximation to analytically demonstrate that the type-I Weyl semimetals may undergo a quantum phase transition to type-II Weyl semimetals in the presence of the finite charge and magnetic disorder when non-zero tilt exist. The phase transition occurs when the disorder renormalizes the topological mass, thereby reducing the Fermi velocity near the Weyl cone below the tilt of the cone. We also confirm the presence of the disorder induced phase transition in Weyl semimetals using exact diagonalization of a three-dimensional tight-binding model to calculate the resultant phase diagram of the type-I Weyl semimetal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا