ترغب بنشر مسار تعليمي؟ اضغط هنا

Here we report on the significant role of a so far overlooked dynamical aspect, namely a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e. to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an important and entirely new aspect of the long-term dynamics of small bodies. Ceres fingerprint in asteroid dynamics, expressed through the discovered secular resonance effect, completely changes our understanding of the way in which perturbations by Ceres-like objects affect the orbits of nearby bodies.
We present the results of our search for a dynamical family around the active asteroid P/2012F5 (Gibbs). By applying the hierarchical clustering method, we discover an extremely compact 9-body cluster associated with P/2012F5. The statistical signifi cance of this newly discovered Gibbs cluster is estimated to be >99.9%, strongly suggesting that its members share a common origin. The cluster is located in a dynamically cold region of the outer main-belt at a proper semi-major axis of about 3.005 AU, and all members are found to be dynamically stable over very long time-scales. Backward numerical orbital integrations show that the age of the cluster is only 1.5 $pm$ 0.1 Myr. Taxonomic classifications are unavailable for most of the cluster members, but SDSS spectrophotometry available for two cluster members indicate that both appear to be $Q$-type objects. We also estimate a lower limit of the size of the parent body to be about 10 km, and find that the impact event which produced the Gibbs cluster is intermediate between a cratering and a catastrophic collision. In addition, we search for new main-belt comets in the region of the Gibbs cluster by observing seven asteroids either belonging to the cluster, or being very close in the space of orbital proper elements. However, we do not detect any convincing evidence of the presence of a tail or coma in any our targets. Finally, we obtain optical images of P/2012F5, and find absolute R-band and V-band magnitudes of $H_R$ = 17.0 $pm$ 0.1 mag and $H_V$ = 17.4 $pm$ 0.1 mag, respectively, corresponding to an upper limit on the diameter of the P/2012F5 nucleus of about 2 km.
We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m t elescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The objects intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater th an 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا