ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - Bo Wang , Wanrun Jiang , Xing Dai 2015
The covalent-like characteristics of hydrogen bonds offer a new perspective on intermolecular interactions. Here, using density functional theory and post-Hartree-Fock methods, we reveal that there are two bonding molecular orbitals (MOs) crossing th e O and H atoms of the hydrogen-bond in water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. These results illustrate the covalent-like character of the hydrogen bond between water molecules, which contributes to the essential understanding of ice, liquid water, related materials, and life sciences.
We report the first experimental observation of quantum holographic imaging with entangled photon pairs, generated in a spontaneous parametric down-conversion process. The signal photons play both roles of object wave and reference wave in holography but are recorded by a point detector providing only encoding information, while the idler photons travel freely and are locally manipulated with spatial resolution. The holographic image is formed by the two-photon correlation measurement, although both the signal and idler beams are incoherent. According to the detection regime of the signal photons, we analyze three types of quantum holography schemes: point detection, coherent detection and bucket detection, which can correspond to classical holography using a point source, a plane-wave coherent source and a spatially incoherent source, respectively. Our experiment demonstrates that the two-photon holography in the point detection regime is equivalent to the one-photon holography using a point source. Physically, the quantum holography experiment verifies that a pair of non-commutable physical quantities, the amplitude and phase components of the field operator, can be nonlocally measured through two-photon entanglement.
We report an experimental observation of quantum Airy disk diffraction pattern using an entangled two-photon source. In contrast to the previous quantum lithography experiments where the subwavelength diffraction patterns were observed in the far fie ld limit, we perform the Fraunhofer diffraction experiment with a convex lens. The experimental result shows that the two-photon Airy disk is provided with the super-resolution spot, which surpasses the classical diffraction limit. In particular, the spot size can be well controlled by the focal length, which adapted to optical super-focusing. Our experiment can promote potential application of quantum lithography.
We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication on the X-ray observations of heated polar-cap emission is also discussed.
138 - Bo Wang , Chao Fan (1 2010
The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such ki nd of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called component B of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.
196 - Hong-Bo Hu 2009
Supernova remnants have long been regarded as sources of the Galactic cosmic rays up to petaelectronvolts, but convincing evidence is still lacking. In this work we explore the common origin of the subtle features of the cosmic ray spectra, such as t he knee of cosmic ray spectra and the excesses of electron/positron fluxes recently observed by ATIC, H.E.S.S., Fermi-LAT and PAMELA. Numerical calculation shows that those features of cosmic ray spectra can be well reproduced in a scenario with e$^+$e$^-$ pair production by interactions between high energy cosmic rays and background photons in an environment similar to the young supernova remnant. The success of such a coherent explanation serves in turn as an evidence that at least a portion of cosmic rays might be accelerated at young supernova remnants.
The amount of $^{56}$Ni produced in type Ia supernova (SN Ia) explosion is probably the most important physical parameter underlying the observed correlation of SN Ia luminosities with their light curves. Based on an empirical relation between the $^ {56}$Ni mass and the light curve parameter $triangle m_{15}$, we obtained rough estimates of the $^{56}$Ni mass for a large sample of nearby SNe Ia with the aim of exploring the diversity in SN Ia. We found that the derived $^{56}$Ni masses for different SNe Ia could vary by a factor of ten (e.g., $M_{rm Ni}=0.1 - 1.3$ $M_{odot}$), which cannot be explained in terms of the standard Chandrasekhar-mass model (with a $^{56}$Ni mass production of 0.4 -- 0.8 $M_{odot}$). Different explosion and/or progenitor models are clearly required for various SNe Ia, in particular, for those extremely nickel-poor and nickel-rich producers. The nickel-rich (with $M_{rm Ni}$ $>$ 0.8 $M_{odot}$) SNe Ia are very luminous and may have massive progenitors exceeding the Chandrasekhar-mass limit since extra progenitor fuel is required to produce more $^{56}$Ni to power the light curve. This is also consistent with the finding that the intrinsically bright SNe Ia prefer to occur in stellar environments of young and massive stars. For example, 75% SNe Ia in spirals have $Delta m_{15} < 1.2$ while this ratio is only 18% in E/S0 galaxies. On the other hand, the nickel-poor SNe Ia (with $M_{rm Ni}$ $<$ 0.2 $M_{odot}$) may invoke the sub-Chandrasekhar model, as most of them were found in early-type E/S0 galaxies dominated by the older and low-mass stellar populations. This indicates that SNe Ia in spiral and E/S0 galaxies have progenitors of different properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا