ترغب بنشر مسار تعليمي؟ اضغط هنا

Typical quantum gate tomography protocols struggle with a self-consistency problem: the gate operation cannot be reconstructed without knowledge of the initial state and final measurement, but such knowledge cannot be obtained without well-characteri zed gates. A recently proposed technique, known as randomized benchmarking tomography (RBT), sidesteps this self-consistency problem by designing experiments to be insensitive to preparation and measurement imperfections. We implement this proposal in a superconducting qubit system, using a number of experimental improvements including implementing each of the elements of the Clifford group in single `atomic pulses and custom control hardware to enable large overhead protocols. We show a robust reconstruction of several single-qubit quantum gates, including a unitary outside the Clifford group. We demonstrate that RBT yields physical gate reconstructions that are consistent with fidelities obtained by randomized benchmarking.
We present methods and results of shot-by-shot correlation of noisy measurements to extract entangled state and process tomography in a superconducting qubit architecture. We show that averaging continuous values, rather than counting discrete thresh olded values, is a valid tomographic strategy and is in fact the better choice in the low signal-to-noise regime. We show that the effort to measure $N$-body correlations from individual measurements scales exponentially with $N$, but with sufficient signal-to-noise the approach remains viable for few-body correlations. We provide a new protocol to optimally account for the transient behavior of pulsed measurements. Despite single-shot measurement fidelity that is less than perfect, we demonstrate appropriate processing to extract and verify entangled states and processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا