ترغب بنشر مسار تعليمي؟ اضغط هنا

A {em balanced} spatial graph has an integer weight on each edge, so that the directed sum of the weights at each vertex is zero. We describe the Alexander module and polynomial for balanced spatial graphs (originally due to Kinoshita cite{ki}), and examine their behavior under some common operations on the graph. We use the Alexander module to define the determinant and $p$-colorings of a balanced spatial graph, and provide examples. We show that the determinant of a spatial graph determines for which $p$ the graph is $p$-colorable, and that a $p$-coloring of a graph corresponds to a representation of the fundamental group of its complement into a metacyclic group $Gamma(p,m,k)$. We finish by proving some properties of the Alexander polynomial.
The symmetries of complex molecular structures can be modeled by the {em topological symmetry group} of the underlying embedded graph. It is therefore important to understand which topological symmetry groups can be realized by particular abstract gr aphs. This question has been answered for complete graphs; it is natural next to consider complete bipartite graphs. In previous work we classified the complete bipartite graphs that can realize topological symmetry groups isomorphic to $A_4$, $S_4$ or $A_5$; in this paper we determine which complete bipartite graphs have an embedding in $S^3$ whose topological symmetry group is isomorphic to $mathbb{Z}_m$, $D_m$, $mathbb{Z}_r times mathbb{Z}_s$ or $(mathbb{Z}_r times mathbb{Z}_s) ltimes mathbb{Z}_2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا