ترغب بنشر مسار تعليمي؟ اضغط هنا

The interplay between traffic dynamics and epidemic spreading on complex networks has received increasing attention in recent years. However, the control of traffic-driven epidemic spreading remains to be a challenging problem. In this Brief Report, we propose a method to suppress traffic-driven epidemic outbreak by properly removing some edges in a network. We find that the epidemic threshold can be enhanced by the targeted cutting of links among large-degree nodes or edges with the largest algorithmic betweeness. In contrast, the epidemic threshold will be reduced by the random edge removal. These findings are robust with respect to traffic-flow conditions, network structures and routing strategies. Moreover, we find that the shutdown of targeted edges can effectively release traffic load passing through large-degree nodes, rendering a relatively low probability of infection to these nodes.
In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on clusters statistics. Compared with assort ative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolutions of the success rate, the number of total words and the number of different words, are also studied.
In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard co llaborative filtering (CF) using Pearson correlation. Furthermore, we introduce a free parameter $beta$ to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-$N$ similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.
In this Letter, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the standard Pearson coefficient, the user-user similarities are o btained by a diffusion process. Furthermore, by considering the second order similarities, we design an effective algorithm that depresses the influence of mainstream preferences. The corresponding algorithmic accuracy, measured by the ranking score, is further improved by 24.9% in the optimal case. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that the algorithm based on second order similarity can outperform the MCF simultaneously in all three criteria.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا