ترغب بنشر مسار تعليمي؟ اضغط هنا

It is often of interest to combine available estimates of a similar quantity from multiple data sources. When the corresponding variances of each estimate are also available, a model should take into account the uncertainty of the estimates themselve s as well as the uncertainty in the estimation of variances. In addition, if there exists a strong association between estimates and their variances, the correlation between these two quantities should also be considered. In this paper, we propose a bivariate hierarchical Bayesian model that jointly models the estimates and their estimated variances assuming a correlation between these two measures. We conduct simulations to explore the performance of the proposed bivariate Bayesian model and compare it to other commonly used methods under different correlation scenarios. The proposed bivariate Bayesian model has a wide range of applications. We illustrate its application in three very different areas: PET brain imaging studies, meta-analysis, and small area estimation.
A novel model, devised to describe spontaneous chirality synchronization in complex liquids and liquid crystals, is proposed and studied. Segments of ribbon-like molecular columns with left- or right-handed 180degree twist lie on the bonds of a honey comb lattice so that three ribbons meet in a vertex of the hexagonal honeycomb. The energy of each vertex is a minimum if the three ribbons have the same chirality, -E, and is +E otherwise, and the ground state is homochiral, i.e. all ribbons have the same hand. The energy levels for two vertices linked by a single ribbon are either -2E, 0 and +2 E in this vertex model. Monte Carlo simulations demonstrate that this model is identical to an Ising spin model on a Kagome lattice, for which the site energy structure is quite different. The equivalence of the ordering of the vertex and Ising spin models is also shown analytically. The energy difference between the disordered and ground states, 4J in the spin model, is related to the transition temperature for the Kagome lattice using the exact result, Tc=2.14J. The ordering energy difference for a single site is 50% higher for the vertex model. The thermodynamic energy for the vertex model is corrected by a factor of 1/3 due to double counting and this makes the specific heat of the vertex model also equal to that of the spin model as expected. Other similar models where there is an unusual relation between the site and thermodynamic energies are discussed briefly.
In this paper, we propose a learning-based approach for denoising raw videos captured under low lighting conditions. We propose to do this by first explicitly aligning the neighboring frames to the current frame using a convolutional neural network ( CNN). We then fuse the registered frames using another CNN to obtain the final denoised frame. To avoid directly aligning the temporally distant frames, we perform the two processes of alignment and fusion in multiple stages. Specifically, at each stage, we perform the denoising process on three consecutive input frames to generate the intermediate denoised frames which are then passed as the input to the next stage. By performing the process in multiple stages, we can effectively utilize the information of neighboring frames without directly aligning the temporally distant frames. We train our multi-stage system using an adversarial loss with a conditional discriminator. Specifically, we condition the discriminator on a soft gradient mask to prevent introducing high-frequency artifacts in smooth regions. We show that our system is able to produce temporally coherent videos with realistic details. Furthermore, we demonstrate through extensive experiments that our approach outperforms state-of-the-art image and video denoising methods both numerically and visually.
98 - Bing Zeng , Lingze Duan 2021
The interaction between an atomic system and a few-cycle ultrafast pulse carries rich physics and a considerable application prospect in quantum-coherence control. However, theoretical understanding of its general behaviors has been hindered by the l ack of an analytical description in this regime, especially with regard to the impact of the carrier-envelope phase (CEP). Here, we present an analytical theory that describes a two-level atom driven by a far-off-resonance, few-cycle square pulse. A simple, closed-form solution of the Schrodinger equation is obtained under the first-order perturbation without invoking the rotating-wave approximation or the slowly varying envelope approximation. Further investigation reveals an arithmetic relation between the final inversion of the atom and the CEP of the pulse. Despite its mathematical simplicity, the relation is able to capture some of the key features of the interaction, which prove to be robust against generalization of pulse shapes and show good agreements with numerical solutions. The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum coherence.
143 - Bing Zeng , Xinyu Li , Liang Gao 2018
Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal opt imization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the optimal values of niching parameters for different optimization problems, and how to jump out of the local optima efficiently. These two difficulties limited their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. In the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. In the other hand, WSA-IC enables the identification of extreme point during iterations relying on two new parameters (i.e., stability threshold Ts and fitness threshold Tf), to jump out of the located extreme point. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and five additional classical multimodal functions with high dimensions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.
We have performed Monte Carlo simulations to investigate the temperature dependence of the ordering of the side chains of the X-shape liquid crystal molecules which are arranged in a hexagonal array. Each hexagon contains six side chains, one from ea ch side of the hexagon. Each liquid crystal molecule has two, dissimilar, side chains, one that contains silicon and one containing fluorine. Like chains attract each other more strongly than unlike chains and this drives an order-disorder transition. The system is frustrated because it is not possible to find a configuration in which all the hexagons are occupied by either all silicon or all fluorine chains. There are two phase transitions. If only pairwise interactions are included it is found that there is a novel fluctuating phase between the disordered phase and the fully ordered ground state. This did not agree with the experiments where an intermediate phase was seen that had long range order on one of the three sublattices. Agreement was found when the calculations were modified to include attractive three body interactions between the silicon chains.
68 - Bing Zeng , Liang Gao , Xinyu Li 2017
Increasing nature-inspired metaheuristic algorithms are applied to solving the real-world optimization problems, as they have some advantages over the classical methods of numerical optimization. This paper has proposed a new nature-inspired metaheur istic called Whale Swarm Algorithm for function optimization, which is inspired by the whales behavior of communicating with each other via ultrasound for hunting. The proposed Whale Swarm Algorithm has been compared with several popular metaheuristic algorithms on comprehensive performance metrics. According to the experimental results, Whale Swarm Algorithm has a quite competitive performance when compared with other algorithms.
We present a framework for fully-simulatable $h$-out-of-$n$ oblivious transfer ($OT^{n}_{h}$) with security against non-adaptive malicious adversaries. The framework costs six communication rounds and costs at most $40n$ public-key operations in comp utational overhead. Compared with the known protocols for fully-simulatable oblivious transfer that works in the plain mode (where there is no trusted common reference string available) and proven to be secure under standard model (where there is no random oracle available), the instantiation based on the decisional Diffie-Hellman assumption of the framework is the most efficient one, no matter seen from communication rounds or computational overhead. Our framework uses three abstract tools, i.e., perfectly binding commitment, perfectly hiding commitment and our new smooth projective hash. This allows a simple and intuitive understanding of its security. We instantiate the new smooth projective hash under the lattice assumption, the decisional Diffie-Hellman assumption, the decisional $N$-th residuosity assumption, the decisional quadratic residuosity assumption. This indeed shows that the folklore that it is technically difficult to instantiate the projective hash framework under the lattice assumption is not true. Whats more, by using this lattice-based hash and lattice-based commitment scheme, we gain a concrete protocol for $OT^{n}_{h}$ which is secure against quantum algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا