ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, the master equation for the coupled lossy waveguides is solved using the thermofield dynamics(TFD) formalism. This formalism allows the use of the underlying symmetry algebras SU(2) and SU(1,1), associated with the Hamiltonian of the c oupled lossy waveguides,to compute entanglement and decoherence as a function of time for various input states such as NOON states and thermal states.
Quadratic polynomially deformed $su(1,1)$ and $su(2)$ algebras are utilised in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of a) infalling plus outgoing modes and b) black hole modes plus the infalling modes,using the Janus-faced nature of the model.The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Lastly, we study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance.
Quantum fluctuations in the post inflationary Affleck-Dine baryogenesis model are studied. The squeezed states formalism is used to give evolution equations for the particle and anti-particle modes in the early universe. The role of expansion and par ametric amplification of the quantum fluctuations on the baryon asymmetry produced is investigated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا