ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Bin Shao , Min Feng , Hong Liu 2012
Based on first-principles calculations, we predict that the magnetic anisotropy energy (MAE) of Co-doped TiO$_2$ sensitively depends on carrier accumulation. This magnetoelectric phenomenon provides a promising route to directly manipulate the magnet ization direction of diluted magnetic semiconductor by external electric-fields. We calculate the band structures and reveal the origin of carrier-dependent MAE in k-space. In fact, the carrier accumulation shifts the Fermi energy and regulates the competing contributions to MAE. The first-principles calculations provide a straightforward way to design spintronics materials with electrically controllable spin direction.
272 - Bin Shao , Hong Liu , Jian Wu 2012
The local magnetic moment of Ti:ZnO is calculated from first principles by using the corrected-band-gap scheme (CBGS). The results shows that the system is magnetic with the magnetization of 0.699 $mu_B$ per dopant. The origin of the local magnetic m oment is considered to be the impurity band partially occupied by the donor electrons in the conduction band. Further, the impacts of applying Hubbard U to Ti-d orbital on the magnetic moment have been investigated.
177 - Bin Shao , Min Feng , Hong Liu 2012
Based on first-principles calculation, it has been predicted that the magnetic anisotropy energy (MAE) in Co-doped ZnO (Co:ZnO) depends on electron-filling. Results show that the charge neutral Co:ZnO presents a easy plane magnetic state. While modif ying the total number of electrons, the easy axis rotates from in-plane to out-of-plane. The alternation of the MAE is considered to be the change of the ground state of Co ion, resulting from the relocating of electrons on Co d-orbitals with electron-filling.
76 - Zhi He , Jian Zou , Bin Shao 2010
We consider four two-level atoms interacting with independent non-Markovian reservoirs with detuning. We mainly investigate the effects of the detuning and the length of the reservoir correlation time on the decoherence dynamics of the multipartite e ntanglement. We find that the time evolution of the entanglement of atomic and reservoir subsystems is determined by a parameter, which is a function of the detuning and the reservoir correlation time. We also find that the decay and revival of the entanglement of the atomic and reservoir subsystems are closely related to the sign of the decay rate. We also show that the cluster state is the most robust to decoherence comparing with Dicke, GHZ, and W states for this decoherence channel
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا