ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the escape of particles located in the middle well of a symmetric triple well potential driven sinusoidally by two forces such that the potential wells roll as in stochastic resonance and the height of the potential barrier oscillates sym metrically about a mean as in resonant activation. It has been shown that depending on their phase difference the application of these two synchronized signals may lead to a splitting of time averaged Kramers escape rate and a preferential product distribution in a parallel chemical reaction in the steady state.
A correlation between two noise processes driving the thermally activated particles in a symmetric triple well potential, may cause a symmetry breaking and a difference in relative stability of the two side wells with respect to the middle one. This leads to an asymmetric localization of population and splitting of Kramers rate of escape from the middle well, ensuring a preferential distribution of the products in the course of a parallel reaction.
We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first i ncreases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both emph{stabilization or destabilization of the denatured state} of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا