ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, black hole symmetries have been studied widely and it has been speculated that this procedure will lead to the deeper understanding of the black hole physics. Spontaneous symmetry breaking of the horizon symmetries is one of the very recent attempt to clarify black hole thermal physics. In this work, we are going to investigate the same in three dimensional massive gravity, including higher order of Riemann tensor. We observe that the idea also works well in this gravitational theory, thereby providing stronger demand of the viability of this idea.
We show a direct connection between Kubos fluctuation-dissipation relation and Hawking effect that is valid in any dimensions for any stationary or static black hole. The relevant correlators corresponding to the fluctuating part of the force, comput ed from the known expressions for the anomalous stress tensor related to gravitational anomalies, are shown to satisfy the Kubo relation, from which the temperature of a black hole as seen by an observer at an arbitrary distance is abstracted. This reproduces the Tolman temperature and hence the Hawking temperature as that measured by an observer at infinity.
We compute the corrections, using the tunneling formalisim based on a quantum WKB approach, to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. The results are related to the trace anomaly and are shown to be e quivalent to findings inferred from Hawkings original calculation based on path integrals using zeta function regularization. Finally, exploiting the corrected temperature and periodicity arguments we also find the modification to the original Schwarzschild metric which captures the effect of quantum corrections.
The role of chirality is discussed in unifying the anomaly and the tunneling formalisms for deriving the Hawking effect. Using the chirality condition and starting from the familiar form of the trace anomaly, the chiral (gravitational) anomaly, manif ested as a nonconservation of the stress tensor, near the horizon of a black hole, is derived. Solution of this equation yields the stress tensor whose asymptotic infinity limit gives the Hawking flux. Finally, use of the same chirality condition in the tunneling formalism gives the Hawking temperature that is compatible with the flux obtained by anomaly method.
Using a graphical analysis, we show that for the horizon radius $r_hgtrsim 4.8sqrttheta$, the standard semiclassical Bekenstein-Hawking area law for noncommutative Schwarzschild black hole exactly holds for all orders of $theta$. We also give the cor rections to the area law to get the exact nature of the Bekenstein-Hawking entropy when $r_h<4.8sqrttheta$ till the extremal point $r_h=3.0sqrt{theta}$.
We give a general derivation, for any static spherically symmetric metric, of the relation $T_h=frac{cal K}{2pi}$ connecting the black hole temperature ($T_h$) with the surface gravity ($cal K$), following the tunneling interpretation of Hawking radi ation. This derivation is valid even beyond the semi classical regime i. e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space time. The effects of back reaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and back reaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.
We give a correction to the tunneling probability by taking into account the back reaction effect to the metric of the black hole spacetime. We then show how this gives rise to the modifications in the semiclassical black hole entropy and Hawking tem perature. Finally, we reproduce the familiar logarithmic correction to the Bekenstein-Hawking area law.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا