ترغب بنشر مسار تعليمي؟ اضغط هنا

We report synthesis of non superconducting parent compound of iron chalcogenide, i.e., FeTe single crystal by self flux method. The FeTe single crystal is crystallized in tetragonal structure with the P4/nmm space group. The detailed SEM (scanning el ectron microscopy) results showed that the crystals are formed in slab like morphology and are near (slight deficiency of Te) stoichiometric with homogenous distribution of Fe and Te. The coupled structural and magnetic phase transition is seen at around 70K in both electrical resistivity and magnetization measurements, which is hysteric (deltaT = 5K) in nature with cooling and warming cycles. Magnetic susceptibility (chi-T) measurements showed the magnetic transition to be of antiferromagnetic nature, which is substantiated by isothermal magnetization (M-H) plots as well. The temperature dependent electrical resistivity measured in 10kOe field in both in plane and out of plane field directions showed that the hysteric width nearly becomes double to deltaT = 10K, and is maximum for the out of plane field direction for the studied FeTe single crystal. We also obtained a sharp spike like peak in heat capacity Cp(T) measurement due to the coupled structural and magnetic order phase transitions.
We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc) value of around 11.5K and the iso-thermal MH showed typical type-II superconducting behavior. The lower critical field being estimated by measuring the low field iso-thermal magnetization in superconducting regime is found to be above 200 Oe at 0K.
Very recent report [1] on observation of superconductivity in Bi4O4S3 could potentially reignite the search for superconductivity in a broad range of layered sulphides. We report here synthesis of Bi4O4S3 at 5000C by vacuum encapsulation technique an d basic characterizations. Detailed structural, magnetization, and electrical transport results are reported. Bi4O4S3 is contaminated by small amounts of Bi2S3 and Bi impurities. The majority phase is tetragonal I4/mmm space group with lattice parameters a = 3.9697(2){AA}, c = 41.3520(1){AA}. Both AC and DC magnetization measurements confirmed that Bi4O4S3 is a bulk superconductor with superconducting transition temperature (Tc) of 4.4K. Isothermal magnetization (MH) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (Hc1) at 2K, of the new superconductor is found to be ~39 Oe. The magneto-transport R(T, H) measurements showed a resistive broadening and decrease in Tc (R=0) to lower temperatures with increasing magnetic field. The extrapolated upper critical field Hc2(0) is ~ 310kOe with a corresponding Ginzburg-Landau coherence length of ~100{AA} . In the normal state the {rho} ~ T2 is not indicated. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as synthesized Bi4O4S3. On the other hand same temperature heat treated Bi is not superconducting, thus excluding possibility of impurity driven superconductivity in the newly discovered Bi4O4S3 superconductor.
We present detailed magnetization and magneto-transport studies on the title compound SmCoAsO. In a recent paper we reported [1] the complex magnetism of this compound. SmCoAsO undergoes successive paramagnetic (PM) - ferro-magnetic (FM) - anti-ferro -magnetic (AFM) transitions with decrease in temperature. This is mainly driven via the c-direction interaction of Sm4f (SmO layer) spins with adjacent (CoAs layer) ordered Co3d spins. In this article we present an evidence of kinetic arrest for FM-AFM transition. The isothermal magnetization (MH) loops for SmCoAsO exhibited the meta-magnetic transitions at 6, 8 and 10K at around 80, 60 and 50kOe fields respectively with characteristic hysteresis shoulders along with the non-zero moment at origin, thus suggesting the possibility of kinetic arrest. Suggested kinetic arrest is further evident in zero field-cooled (ZFC) and field-cooled (FC) hysteresis under high fields of up to 140kOe magnetization (MT) and the magneto-transport measurements R(T)H during FM-AFM transition. The time dependent moment experiments exhibited very small (~2-3%) increase of the same below 20kO and decrease for 30kOe at 15K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا