ترغب بنشر مسار تعليمي؟ اضغط هنا

We study effects of phase fluctuations on phase sensitivity and visibility of a class of robust path-entangled photon Fock states (known as mm states) as compared to the maximally path-entangled N00N states in presence of realistic phase fluctuations such as turbulence noise. Our results demonstrate that the mm states, which are more robust than the N00N state against photon loss, perform equally well when subject to such fluctuations. We show that the phase sensitivity with parity detection for both of the above states saturates the quantum Cramer-Rao bound in presence of such noise, suggesting that the parity detection presents an optimal detection strategy.
One of the major challenges in quantum computation has been to preserve the coherence of a quantum system against dephasing effects of the environment. The information stored in photon polarization, for example, is quickly lost due to such dephasing, and it is crucial to preserve the input states when one tries to transmit quantum information encoded in the photons through a communication channel. We propose a dynamical decoupling sequence to protect photonic qubits from dephasing by integrating wave plates into optical fiber at prescribed locations. We simulate random birefringent noise along realistic lengths of optical fiber and study preservation of polarization qubits through such fibers enhanced with Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling. This technique can maintain photonic qubit coherence at high fidelity, making a step towards achieving scalable and useful quantum communication with photonic qubits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا