ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon-number correlation measurements are performed on bright squeezed vacuum states using a standard Bell-test setup, and quantum correlations are observed for conjugate polarization-frequency modes. We further test the entanglement witnesses for t hese states and demonstrate the violation of the separability criteria, which infers that all the macroscopic Bell states, containing typically $10^6$ photons per pulse, are polarization entangled. The study also reveals the symmetry of macroscopic Bell states with respect to local polarization transformations.
The polarization properties of macroscopic Bell states are characterized using three-dimensional quantum polarization tomography. This method utilizes three-dimensional inverse Radon transform to reconstruct the polarization quasiprobability distribu tion function of a state from the probability distributions measured for various Stokes observables. The reconstructed 3D distributions obtained for the macroscopic Bell states are compared with those obtained for a coherent state with the same mean photon number. The results demonstrate squeezing in one or more Stokes observables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا