ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study Simultaneous Communication of Data and Control (SCDC) information signals in Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) wireless systems. In particular, considering an FD MIMO base station serving multiple single-a ntenna FD users, a novel multi-user communication scheme for simultaneous DownLink (DL) beamformed data transmission and UpLink (UL) pilot-assisted channel estimation is presented. Capitalizing on a recent FD MIMO hardware architecture with reduced complexity self-interference analog cancellation, we jointly design the base stations transmit and receive beamforming matrices as well as the settings for the multiple analog taps and the digital SI canceller with the objective to maximize the DL sum rate. Our simulation results showcase that the proposed approach outperforms its conventional half duplex counterpart with 50% reduction in hardware complexity compared to the latest FD-based SCDC schemes.
In this paper, we focus on reduced complexity full duplex Multiple-Input Multiple-Output (MIMO) systems and present a joint design of digital transmit and receive beamforming with Analog and Digital (A/D) self-interference cancellation. We capitalize on a recently proposed multi-tap analog canceller architecture, whose number of taps does not scale with the number of transceiver antennas, and consider practical transmitter impairments for the full duplex operation. Particularly, transmitter IQ imbalance and nonlinear power amplification are assumed via relevant realistic models. Aiming at suppressing the residual linear and nonlinear self-interference signal below the noise floor, we propose a novel digital self-interference cancellation technique that is jointly designed with the configuration of the analog taps and digital beamformers. Differently from the state of the art, we design pilot-assisted estimation of all involved wireless channels. Our representative Monte Carlo simulation results demonstrate that our unified full duplex MIMO design exhibits higher self-interference cancellation capability with less analog taps compared to available techniques, which results in improved achievable rate and bit error performance.
Single-antenna full-duplex communication technology has the potential to substantially increase spectral efficiency. However, limited propagation domain cancellation of single-antenna system results in a higher impact of receiver chain nonlinearities on the residual self-interference (SI) signal. In this paper, we offer a comprehensive SI model for single-antenna full-duplex systems based on direct-conversion transceiver structure considering nonlinearities of all the transceiver radio frequency (RF) components, in-phase/quadrature (IQ) imbalances, phase noise effect, and receiver noise figure. To validate our model, we also propose a more appropriate digital SI cancellation approach considering receiver chain RF and baseband nonlinearities. The proposed technique employs orthogonalization of the design matrix using QR decomposition to alleviate the estimation and cancellation error. Finally, through circuit-level waveform simulation, the performance of the digital cancellation strategy is investigated, which achieves 20 dB more cancellation compared to existing methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا