ترغب بنشر مسار تعليمي؟ اضغط هنا

The modulation depth of 2-D electron gas (2DEG) based THz modulators using AlGaAs/GaAs heterostructures with metal gates is inherently limited to < 30%. The metal gate not only attenuates the THz signal (> 90%) but also severely degrades the modulati on depth. The metal losses can be significantly reduced with an alternative material with tunable conductivity. Graphene presents a unique solution to this problem due to its symmetric band structure and extraordinarily high mobility of holes that is comparable to electron mobility in conventional semiconductors. The hole conductivity in graphene can be electrostatically tuned in the graphene-2DEG parallel capacitor configuration, thus more efficiently tuning the THz transmission. In this work, we show that it is possible to achieve a modulation depth of > 90% while simultaneously minimizing signal attenuation to < 5% by tuning the Fermi level at the Dirac point in graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا