ترغب بنشر مسار تعليمي؟ اضغط هنا

Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and H alpha photometric study of the young open clusters NGC 162 4 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by <E(B-V)> = 0.92 +/- 0.05 and 0.74 +/- 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (Rv,cl = 5.2 +/- 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 +/- 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 +/- 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 Myr and 1.5 - 2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF (Gamma_NGC 1624 = -2.0 +/- 0.2 and Gamma_NGC 1931 = -2.0 +/- 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters seems not to be far different from that in the solar neighborhood.
We present a UBV I and H alpha photometric study of the young open cluster NGC 1893 in the H II region W8 (IC 410 or Sh 2-236). A total of 65 early-type members are selected from photometric diagrams. A mean reddening of the stars is <E(B-V)> = 0.563 +/- 0.083 mag. The published photometric data in the near- and mid-infrared passbands are used to test the reddening law toward the cluster, and we confirm that the reddening law is normal (R_V = 3.1). Zero-age main sequence fitting gives a distance modulus of V_0 - M_V = 12.7 +/- 0.2 mag, equivalent to 3.5 +/- 0.3 kpc. From H alpha photometry 125 H alpha emission stars and candidates are identified as pre-main sequence (PMS). The lists of young stellar objects and X-ray sources published by previous studies allow us to select a large number of PMS members down to 1 M_sun. Isochrone fitting in the Hertzsprung-Russell diagram gives a turn-off age of 1.5 Myr and the median age of 1.9 Myr from the PMS members with a spread of 5 Myr. We derive the initial mass function (IMF) for stars with mass larger than 1 M_sun. The slope of the IMF (Gamma = -1.3 +/- 0.1) is well consistent with the Salpeter/Kroupa IMF. A total mass of the cluster appears to be in excess of 1,300 M_sun. Finally, we estimate the mass accretion rate of 82 PMS members in the mass range of 0.6 M_sun to 5 M_sun.
Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We have initiated the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry o f a large number of open clusters in the SAAO Johnson-Cousins $UBVI$ system. To achieve our main goal, we have paid much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small, sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - Mv relations, Sp - Teff relations, Sp - color relations, and Teff - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.
Westerlund 1 is the most important starburst cluster in the Galaxy due to its massive star content. We have performed BVIc and JKs photometry to investigate the initial mass function (IMF). By comparing the observed color with the spectral type - int rinsic color relation, we obtain the mean interstellar reddening of <E(B-V)>=4.19+/-0.23 and <E(J-Ks)>=1.70+/-0.21. Due to the heavy extinction toward the cluster, the zero-age main sequence fitting method based on optical photometry proved to be inappropriate for the distance determination, while the near-infrared photometry gave a reliable distance to the cluster -- 3.8 kpc from the empirical relation. Using the recent theoretical stellar evolution models with rotation, the age of the cluster is estimated to be 5.0+/-1.0 Myr. We derived the IMF in the massive part and obtained a fairly shallow slope of {Gamma} = -0.8 +/- 0.1. The integration of the IMF gave a total mass for the cluster in excess of 5.0 x 10^4 solar mass. The IMF shows a clear radial variation indicating the presence of mass segregation. We also discuss the possible star formation history of Westerlund 1 from the presence of red supergiants and relatively low-luminosity yellow hypergiants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا