ترغب بنشر مسار تعليمي؟ اضغط هنا

The space-borne missions CoRoT and Kepler have opened a new era in stellar physics, especially for evolved stars, with precise asteroseismic measurements that help determine precise stellar parameters and perform ensemble astero seismology. This pape r deals with the quality of the information that we can retrieve from the oscillations. It focusses on the conditions for obtaining the most accurate measurement of the radial and non-radial oscillation patterns. This accuracy is a prerequisite for making the best with asteroseismic data. From radial modes, we derive proxies of the stellar mass and radii with an unprecedented accuracy for field stars. For dozens of subgiants and thousands of red giants, the identification of mixed modes (corresponding to gravity waves propagating in the core coupled to pressure waves propagating in the envelope) indicates unambiguously their evolutionary status. As probes of the stellar core, these mixed modes also reveal the internal differential rotation and show the spinning down of the core rotation of stars ascending the red giant branch. A toy model of the coupling of waves constructing mixed modes is exposed, for illustrating many of their features.
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا