We study the symplectic geometry of the Jaynes-Cummings-Gaudin model with $n=2m-1$ spins. We show that there are focus-focus singularities of maximal Williamson type $(0,0,m)$. We construct the linearized normal flows in the vicinity of such a point
and show that soliton type solutions extend them globally on the critical torus. This allows us to compute the leading term in the Taylor expansion of the symplectic invariants and the monodromy associated to this singularity.
We show that it is possible to initialize and manipulate in a deterministic manner protected qubits using time varying Hamiltonians. Taking advantage of the symmetries of the system, we predict the effect of the noise during the initialization and ma
nipulation. These predictions are in good agreement with numerical simulations. Our study shows that the topological protection remains efficient under realistic experimental conditions.
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviours. An exciting proposal for quantum co
mputation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. So-called non-Abelian anyons are most promising for quantum computation, but their physical realization may prove to be complex. Abelian anyons, however, are easier to understand theoretically and realize experimentally. Here we show that complex topological memories inspired by non-Abelian anyons can be engineered in Abelian models. We explicitly demonstrate the control procedures for the encoding and manipulation of quantum information in specific lattice models that can be implemented in the laboratory. This bridges the gap between requirements for anyonic quantum computation and the potential of state-of-the-art technology.
We have calculated the finite-frequency current noise of a superconductor-ferromagnet quantum point contact (SF QPC). This signal is qualitatively affected by the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon reflecti
on on the QPC. For a weakly transparent QPC, noise steps appear at frequencies or voltages determined directly by the SDIPS. These steps can occur at experimentally accessible temperatures and frequencies. Finite frequency noise is thus a promising tool to characterize the scattering properties of a SF QPC.
We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the l
imit of small coupling to the environment it exhibits a non-monotonous behavior with a maximum voltage followed by a parametrically large region where $Vpropto 1/I$. We argue that its experimental measurement provides a direct probe of the amplitude of the quantum transitions in constituting Josephson circuits and thus allows their full characterization.