ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the high galactic latitude sky, the far-infrared (FIR) intensity is tightly correlated to the total hydrogen column density which is made up of atomic (HI) and molecular hydrogen (H$_{2})$. Above a certain column density threshold, atomic hyd rogen turns molecular. We analyse gas and dust properties of intermediate-velocity clouds (IVCs) in the lower galactic halo to explore their transition from the atomic to the molecular phase. Driven by observations, we investigate the physical processes that transform a purely atomic IVC into a molecular one. Data from the Effelsberg-Bonn HI-Survey (EBHIS) are correlated to FIR wavebands of the Planck satellite and IRIS. Modified black-body emission spectra are fitted to deduce dust optical depths and grain temperatures. We remove the contribution of atomic hydrogen to the FIR intensity to estimate molecular hydrogen column densities. Two IVCs show different FIR properties, despite their similarity in HI, such as narrow spectral lines and large column densities. One FIR bright IVC is associated with H$_{2}$, confirmed by $^{12}$CO $(1rightarrow0)$ emission; the other IVC is FIR dim and shows no FIR excess, which indicates the absence of molecular hydrogen. We propose that the FIR dim and bright IVCs probe the transition between the atomic and molecular gas phase. Triggered by dynamical processes, this transition happens during the descent of IVCs onto the galactic disk. The most natural driver is ram pressure exerted onto the cloud by the increasing halo density. Because of the enhanced pressure, the formation timescale of H$_{2}$ is reduced, allowing the formation of large amounts of H$_{2}$ within a few Myr.
Using Milky Way data of the new Effelsberg-Bonn HI Survey (EBHIS) and the Galactic All-Sky Survey (GASS), we present a revised picture of the high-velocity cloud (HVC) complex Galactic Center Negative (GCN). Owing to the higher angular resolution of these surveys compared to previous studies (e.g., the Leiden Dwingeloo Survey), we resolve Complex GCN into lots of individual tiny clumps, that mostly have relatively broad line widths of more than 15 km/s. We do not detect a diffuse extended counterpart, which is unusual for an HVC complex. In total 243 clumps were identified and parameterized which allows us to statistically analyze the data. Cold-line components (i.e., w < 7.5 km/s) are found in about 5% only of the identified cloudlets. Our analysis reveals that Complex GCN is likely built up of several subpopulations that do not share a common origin. Furthermore, Complex GCN might be a prime example for warm-gas accretion onto the Milky Way, where neutral HI clouds are not stable against interaction with the Milky Way gas halo and become ionized prior to accretion.
The Effelsberg-Bonn HI survey (EBHIS) comprises an all-sky survey north of Dec = -5 degrees of the Milky Way and the local volume out to a red-shift of z ~ 0.07. Using state of the art Field Programmable Gate Array (FPGA) spectrometers it is feasible to cover the 100 MHz bandwidth with 16.384 spectral channels. High speed storage of HI spectra allows us to minimize the degradation by Radio Frequency Interference (RFI) signals. Regular EBHIS survey observations started during the winter season 2008/2009 after extensive system evaluation and verification tests. Until today, we surveyed about 8000 square degrees, focusing during the first all-sky coverage of the Sloan-Digital Sky Survey (SDSS) area and the northern extension of the Magellanic stream. The first whole sky coverage will be finished in 2011. Already this first coverage will reach the same sensitivity level as the Parkes Milky Way (GASS) and extragalactic surveys (HIPASS). EBHIS data will be calibrated, stray-radiation corrected and freely accessible for the scientific community via a web-interface. In this paper we demonstrate the scientific data quality and explore the expected harvest of this new all-sky survey.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا