ترغب بنشر مسار تعليمي؟ اضغط هنا

Colour centres in diamond have emerged as versatile tools for solid-state quantum technologies ranging from quantum information to metrology, where the nitrogen-vacancy centre is the most studied to-date. Recently, this toolbox has expanded to includ e different materials for their nanofabrication opportunities, and novel colour centres to realize more efficient spin-photon quantum interfaces. Of these, the silicon-vacancy centre stands out with ultrabright single photon emission predominantly into the desirable zero-phonon line. The challenge for utilizing this centre is to realise the hitherto elusive optical access to its electronic spin. Here, we report spin-tagged resonance fluorescence from the negatively charged silicon-vacancy centre. In low-strain bulk diamond spin-selective excitation under finite magnetic field reveals a spin-state purity approaching unity in the excited state. We also investigate the effect of strain on the centres in nanodiamonds and discuss how spin selectivity in the excited state remains accessible in this regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا