ترغب بنشر مسار تعليمي؟ اضغط هنا

In the past decade, several multi-resolution representation theories for graph signals have been proposed. Bipartite filter-banks stand out as the most natural extension of time domain filter-banks, in part because perfect reconstruction, orthogonali ty and bi-orthogonality conditions in the graph spectral domain resemble those for traditional filter-banks. Therefore, many of the well known orthogonal and bi-orthogonal designs can be easily adapted for graph signals. A major limitation is that this framework can only be applied to the normalized Laplacian of bipartite graphs. In this paper we extend this theory to arbitrary graphs and positive semi-definite variation operators. Our approach is based on a different definition of the graph Fourier transform (GFT), where orthogonality is defined with the respect to the Q inner product. We construct GFTs satisfying a spectral folding property, which allows us to easily construct orthogonal and bi-orthogonal perfect reconstruction filter-banks. We illustrate signal representation and computational efficiency of our filter-banks on 3D point clouds with hundreds of thousands of points.
The world is suffering from a pandemic called COVID-19, caused by the SARS-CoV-2 virus. National governments have problems evaluating the reach of the epidemic, due to having limited resources and tests at their disposal. This problem is especially a cute in low and middle-income countries (LMICs). Hence, any simple, cheap and flexible means of evaluating the incidence and evolution of the epidemic in a given country with a reasonable level of accuracy is useful. In this paper, we propose a technique based on (anonymous) surveys in which participants report on the health status of their contacts. This indirect reporting technique, known in the literature as network scale-up method, preserves the privacy of the participants and their contacts, and collects information from a larger fraction of the population (as compared to individual surveys). This technique has been deployed in the CoronaSurveys project, which has been collecting reports for the COVID-19 pandemic for more than two months. Results obtained by CoronaSurveys show the power and flexibility of the approach, suggesting that it could be an inexpensive and powerful tool for LMICs.
We introduce the Region Adaptive Graph Fourier Transform (RA-GFT) for compression of 3D point cloud attributes. The RA-GFT is a multiresolution transform, formed by combining spatially localized block transforms. We assume the points are organized by a family of nested partitions represented by a rooted tree. At each resolution level, attributes are processed in clusters using block transforms. Each block transform produces a single approximation (DC) coefficient, and various detail (AC) coefficients. The DC coefficients are promoted up the tree to the next (lower resolution) level, where the process can be repeated until reaching the root. Since clusters may have a different numbers of points, each block transform must incorporate the relative importance of each coefficient. For this, we introduce the $mathbf{Q}$-normalized graph Laplacian, and propose using its eigenvectors as the block transform. The RA-GFT achieves better complexity-performance trade-offs than previous approaches. In particular, it outperforms the Region Adaptive Haar Transform (RAHT) by up to 2.5 dB, with a small complexity overhead.
Human annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observab le signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By lifting the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا