ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the goals of gravitational-wave astronomy is simultaneous detection of gravitational-wave signals from merging compact-object binaries and the electromagnetic transients from these mergers. With the next generation of advanced ground-based gra vitational wave detectors under construction, we examine the benefits of the proposed extension of the detector network to include a fourth site in Australia in addition to the network of Hanford, Livingston and Cascina sites. Using Bayesian parameter-estimation analyses of simulated gravitational-wave signals from a range of coalescing-binary locations and orientations, we study the improvement in parameter estimation. We find that an Australian detector can break degeneracies in several parameters; in particular, the localization of the source on the sky is improved by a factor of ~4, with more modest improvements in distance and binary inclination estimates. This enhanced ability to localize sources on the sky will be crucial in any search for electromagnetic counterparts to detected gravitational-wave signals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا