ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the emergence of color superconductivity in the theory of the strong interaction at supranuclear densities. To this end, we follow the renormalization group (RG) flow of dense strong-interaction matter with two massless quark flavors from th e fundamental quark and gluon degrees of freedom at high energies down to the non-perturbative low-energy regime which is found to be governed by the dynamical formation of diquark states. With the strong coupling at the initial RG scale as the only input parameter, we compute the (chirally symmetric) scalar diquark condensate and analyze its scaling behavior over a wide range of the quark chemical potential. Approximations entering our computations are critically assessed. Since our approach naturally allows us to study the scale dependence of couplings, we also monitor the strength of couplings appearing in low-energy models of dense strong-interaction matter. The observed dependence of these couplings on the quark chemical potential may help to amend model studies in the future.
Dense relativistic matter has attracted a lot of attention over many decades now, with a focus on an understanding of the phase structure and thermodynamics of dense strong-interaction matter. The analysis of dense strong-interaction matter is compli cated by the fact that the system is expected to undergo a transition from a regime governed by spontaneous chiral symmetry breaking at low densities to a regime governed by the presence of a Cooper instability at intermediate and high densities. Renormalization group (RG) approaches have played and still play a prominent role in studies of dense matter in general. In the present work, we study RG flows of dense relativistic systems in the presence of a Cooper instability and analyze the role of the Silver-Blaze property. In particular, we critically assess how to apply the derivative expansion to study dense-matter systems in a systematic fashion. This also involves a detailed discussion of regularization schemes. Guided by these formal developments, we introduce a new class of regulator functions for functional RG studies which is suitable to deal with the presence of a Cooper instability in relativistic theories. We close by demonstrating its application with the aid of a simple quark-diquark model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا