ترغب بنشر مسار تعليمي؟ اضغط هنا

109 - Andrew P. Cooper 2015
We study the formation of stellar haloes in three Milky Way-mass galaxies using cosmological smoothed particle hydrodynamics simulations, focusing on the subset of halo stars that form in situ, as opposed to those accreted from satellites. In situ st ars in our simulations dominate the stellar halo out to 20 kpc and account for 30-40 per cent of its total mass. We separate in situ halo stars into three straightforward, physically distinct categories according to their origin: stars scattered from the disc of the main galaxy (heated disc), stars formed from gas smoothly accreted on to the halo (smooth gas) and stars formed in streams of gas stripped from infalling satellites (stripped gas). We find that most belong to the stripped gas category. Those originating in smooth gas outside the disc tend to form at the same time and place as the stripped-gas population, suggesting that their formation is associated with the same gas-rich accretion events. The scattered disc star contribution is negligible overall but significant in the Solar neighbourhood, where ~90 per cent of stars on eccentric orbits once belonged to the disc. However, the distinction between halo and thick disc in this region is highly ambiguous. The chemical and kinematic properties of the different components are very similar at the present day, but the global properties of the in situ halo differ substantially between the three galaxies in our study. In our simulations, the hierarchical buildup of structure is the driving force behind not only the accreted stellar halo, but also those halo stars formed in situ.
111 - Ben Lowing 2014
We present a new technique for creating mock catalogues of the individual stars that make up the accreted component of stellar haloes in cosmological simulations and show how the catalogues can be used to test and interpret observational data. The ca talogues are constructed from a combination of methods. A semi-analytic galaxy formation model is used to calculate the star formation history in haloes in an N-body simulation and dark matter particles are tagged with this stellar mass. The tags are converted into individual stars using a stellar population synthesis model to obtain the number density and evolutionary stage of the stars, together with a phase-space sampling method that distributes the stars while ensuring that the phase-space structure of the original N-body simulation is maintained. A set of catalogues based on the $Lambda$CDM Aquarius simulations of Milky Way mass haloes have been created and made publicly available on a website. Two example applications are discussed that demonstrate the power and flexibility of the mock catalogues. We show how the rich stellar substructure that survives in the stellar halo precludes a simple measurement of its density profile and demonstrate explicitly how pencil-beam surveys can return almost any value for the slope of the profile. We also show that localized variations in the abundance of particular types of stars, a signature of differences in the composition of stellar populations, allow streams to be easily identified.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا