ترغب بنشر مسار تعليمي؟ اضغط هنا

In the quest to reach lower temperatures of ultra-cold gases in optical lattice experiments, non-adiabaticites during lattice loading are one of the limiting factors that prevent the same low temperatures to be reached as in experiments without latti ce. Simulating the loading of a bosonic quantum gas into a one-dimensional optical lattice with and without a trap, we find that the redistribution of atomic density inside a global confining potential is by far the dominant source of heating. Based on these results we propose to adjust the trapping potential during loading to minimize changes to the density distribution. Our simulations confirm that a very simple linear interpolation of the trapping potential during loading already significantly decreases the heating of a quantum gas and we discuss how loading protocols minimizing density redistributions can be designed.
The density-matrix renormalization group method has become a standard computational approach to the low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present a new set of applications, available as part of t he ALPS package, that provide an efficient and flexible implementation of these methods based on a matrix-product state (MPS) representation. Our applications implement, within the same framework, algorithms to variationally find the ground state and low-lying excited states as well as simulate the time evolution of arbitrary one-dimensional and two-dimensional models. Implementing the conservation of quantum numbers for generic Abelian symmetries, we achieve performance competitive with the best codes in the community. Example results are provided for (i) a model of itinerant fermions in one dimension and (ii) a model of quantum magnetism.
We theoretically obtain the phase diagram of localized magnetic impurity spins arranged in a one-dimensional chain on top of a one- or two-dimensional electron gas with Rashba spin-orbit coupling. The interactions between the spins are mediated by th e Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism through the electron gas. Recent work predicts that such a system may intrinsically support topological superconductivity when a helical spin-density wave is formed in the spins, and superconductivity is induced in the electron gas. We analyze, using both analytical and numerical techniques, the conditions under which such a helical spin state is stable in a realistic situation in the presence of disorder. We show that it becomes unstable towards the formation of (anti) ferromagnetic domains if the disorder in the impurity spin positions $delta R$ becomes comparable with the Fermi wave length. We also examine the stability of the helical state against Gaussian potential disorder in the electronic system using a diagrammatic approach. Our results suggest that in order to stabilize the helical spin state, and thus the emergent topological superconductivity, a sufficiently strong Rashba spin-orbit coupling, giving rise to Dzyaloshinskii-Moriya interactions, is required.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا