ترغب بنشر مسار تعليمي؟ اضغط هنا

It is well-known that galaxy environment has a fundamental effect in shaping its properties. We study the environmental effects on galaxy evolution, with an emphasis on the environment defined as the local number density of galaxies. The density fiel d is estimated with different estimators (weighted adaptive kernel smoothing, 10$^{th}$ and 5$^{th}$ nearest neighbors, Voronoi and Delaunay tessellation) for a K$_{s}<$24 sample of $sim$190,000 galaxies in the COSMOS field at 0.1$<$z$<$3.1. The performance of each estimator is evaluated with extensive simulations. We show that overall, there is a good agreement between the estimated density fields using different methods over $sim$2 dex in overdensity values. However, our simulations show that adaptive kernel and Voronoi tessellation outperform other methods. Using the Voronoi tessellation method, we assign surface densities to a mass complete sample of quiescent and star-forming galaxies out to z$sim$3. We show that at a fixed stellar mass, the median color of quiescent galaxies does not depend on their host environment out to z$sim$3. We find that the number and stellar mass density of massive ($>$10$^{11}$M$_{odot}$) star-forming galaxies have not significantly changed since z$sim$3, regardless of their environment. However, for massive quiescent systems at lower redshifts (z$lesssim$1.3), we find a significant evolution in the number and stellar mass densities in denser environments compared to lower density regions. Our results suggest that the relation between stellar mass and local density is more fundamental than the color-density relation and that environment plays a significant role in quenching star formation activity in galaxies at z$lesssim$1.
We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا