ترغب بنشر مسار تعليمي؟ اضغط هنا

Recognizing code-switched speech is challenging for Automatic Speech Recognition (ASR) for a variety of reasons, including the lack of code-switched training data. Recently, we showed that monolingual ASR systems fine-tuned on code-switched data dete riorate in performance on monolingual speech recognition, which is not desirable as ASR systems deployed in multilingual scenarios should recognize both monolingual and code-switched speech with high accuracy. Our experiments indicated that this loss in performance could be mitigated by using certain strategies for fine-tuning and regularization, leading to improvements in both monolingual and code-switched ASR. In this work, we present further improvements over our previous work by using domain adversarial learning to train task agnostic models. We evaluate the classification accuracy of an adversarial discriminator and show that it can learn shared layer parameters that are task agnostic. We train end-to-end ASR systems starting with a pooled model that uses monolingual and code-switched data along with the adversarial discriminator. Our proposed technique leads to reductions in Word Error Rates (WER) in monolingual and code-switched test sets across three language pairs.
Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in one or both languages being mixed. In this work, we show that fine-tuning ASR models on code-switched speech harms performance on monolingual speech. We point out the need to optimize models for code-switching while also ensuring that monolingual performance is not sacrificed. Monolingual models may be trained on thousands of hours of speech which may not be available for re-training a new model. We propose using the Learning Without Forgetting (LWF) framework for code-switched ASR when we only have access to a monolingual model and do not have the data it was trained on. We show that it is possible to train models using this framework that perform well on both code-switched and monolingual test sets. In cases where we have access to monolingual training data as well, we propose regularization strategies for fine-tuning models for code-switching without sacrificing monolingual accuracy. We report improvements in Word Error Rate (WER) in monolingual and code-switched test sets compared to baselines that use pooled data and simple fine-tuning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا