ترغب بنشر مسار تعليمي؟ اضغط هنا

Junctionless transistors made of silicon have previously been demonstrated experimentally and by simulations. Junctionless devices do not require fabricating an abrupt source-drain junction and thus can be easier to implement in aggressive geometries . In this paper, we explore a similar architecture for aggressively scaled devices with the channel consisting of doped carbon nanotubes (CNTs). Gate all around (GAA) field effect transistor (FET) structures are investigated for n- and p-type doping. Current-voltage characteristics and sub-threshold characteristics for a CNTbased junctionless FET is compared with a junctionless silicon nanowire (SiNW) FET with comparable dimensions. Despite the higher on-current of the CNT channels, the device characteristics are poorer compared to the silicon devices due to the smaller CNT band gap.
Inspired by recent experimental realizations and theoretical simulations of thin silicon nanowire-based devices, we perform predictive first-principles simulations of junctionless gated Si nanowire transistors. Our primary predictions are that Si-bas ed transistors are physically possible without major changes in design philosophy at scales of ~1 nm wire diameter and ~3 nm gate length, and that the junctionless transistor may be the only physically sensible design at these length scales. We also present investigations into atomic-level design factors such as dopant positioning and concentration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا